Bumun

Зинин Дмитрий Сергеевич

Фазовые превращения при попутном извлечении РЗЭ из экстракционной фосфорной кислоты

02.00.01 – Неорганическая химия

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата химических наук

Работа выполнена на кафедре общей и неорганической химии Российского химико-технологического университета имени Д.И. Менделеева

Научный руководитель: доктор технических наук, профессор

Бушуев Николай Николаевич, профессор кафедры общей и неорганической химии Российского химико-технологического университета имени

Д.И. Менделеева

Официальные оппоненты: доктор технических наук, профессор

Черемисина Ольга Владимировна, заведующая кафедрой физической химии Санкт-Петербургского

горного университета

кандидат химических наук, доцент

Барышникова Оксана Владимировна, кафедра химической технологии и новых материалов Московского государственного университета имени

М.В. Ломоносова

Ведущая организация: Федеральное государственное бюджетное

образовательное учреждение высшего образования «Ивановский государственный химико-

технологический университет»

Защита состоится 20 сентября 2018 года в 15.00 на заседании диссертационного совета Д 212.204.07 на базе Российского химико-технологического университета имени Д.И. Менделеева (125047 г. Москва, Миусская пл., д. 9) в конференц-зале (443 аудитория).

С диссертацией можно ознакомиться в Информационно-библиотечном центре РХТУ имени Д.И. Менделеева и на сайте http://diss.muctr.ru/author/237.

Автореферат диссертации разослан «____» ____ 2018 г.

Ученый секретарь диссертационного совета Д 212.204.07

Шаталов К.И.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Редкоземельные элементы играют важную роль в современном мире и применяются в изготовлении различных функциональных материалов (катализаторов, постоянных магнитов, лазеров, сверхпроводников, жаропрочных сплавов, керамики и стекла). Количество месторождений, содержащих РЗЭ, достаточно ограничено. В связи с этим, отходы техногенного характера, получаемые в химическом производстве, например в производстве экстракционной фосфорной кислоты, могут служить хорошими альтернативными источниками РЗЭ.

Поиск дешевых адсорбентов РЗЭ из экстракционной фосфорной кислоты и разработка методов дальнейшего концентрирования лантаноидов без использования дорогостоящих ионообменных смол и экстрагентов имеет важное научное и практическое значение. Структурная близость $CaSO_4 \times 0.5H_2O$, $LnPO_4 \times 0.5H_2O$ и $NaLn(SO_4)_2 \times H_2O$ предполагает возможность использования полугидрата сульфата кальция в качестве сорбента для извлечения РЗЭ из растворов ЭФК с образованием осадков $CaSO_4 \times 0.5H_2O$ с высокой концентрацией изоморфно-включенных РЗЭ.

Целью диссертационной работы является исследование и разработка метода извлечения РЗЭ в виде сульфатных осадках-шламах, выделенных из ЭФК, с получением чистых сульфатных, оксалатных и оксидных концентратов РЗЭ. В рамках поставленной цели сформулированы следующие конкретные задачи:

- 1. Определение характера влияния $Na_2[SiF_6]$ на процесс извлечения РЗЭ из ЭФК в виде осадков $CaSO_4{\times}0.5H_2O$.
- 2. Разработка метода рентгеноспектрального флуоресцентного определения РЗЭ в сульфатных осадках-шламах, содержащих РЗЭ.
- 3. Исследование оксалатной конверсии сульфатного осадка-шлама, содержащего РЗЭ с целью очистки от примесных соединений F, Na, Al, Si, P, S, Ti, Mn, Fe, Th, U.
- 4. Исследование фазовых превращений в процессе термического разложения $CaC_2O_4 \times H_2O$ и $Ln_2(C_2O_4)_3 \times nH_2O$ с целью выделения чистых соединений РЗЭ.
 - 5. Получение оксалатных, оксидных и сульфатных концентратов РЗЭ.

Научная новизна работы

1. Впервые установлено, что наличие примесной фазы $Na_2[SiF_6]$ в ЭФК способствует включению РЗЭ в структуру $CaSO_4 \times 0.5H_2O$ преимущественно по схеме гетеровалентного замещения $2Ca^{2+} = Na^+ + Ln^{3+}$. Попутное извлечение La, Ce, Pr, Nd, Sm

при упаривании ЭФК обеспечивается в результате кристаллизации осадка-шлама, содержащего твердый раствор $CaSO_4 \times 0.5H_2O - [NaLn(SO_4)_2 \times H_2O + LnPO_4 \times 0.5H_2O]$.

- 2. Установлено, что в процессе гетерогенной конверсии сульфатного осадкашлама в оксалатную форму твердая фаза очищается от примесных соединений F, Na, Al, Si, P, S, Ti, Mn, Fe, Th, U. Содержание P3Э в твердой фазе оксалатного осадка (смесь $CaC_2O_4 \times H_2O$ и $Ln_2(C_2O_4)_3 \times nH_2O$) увеличивается на 36 % без потерь P3Э в жидкой фазе.
- 3. Впервые установлено, что в результате отжига оксалатного осадка при температуре выше 442 °C, содержащего РЗЭ, образуется кальцит $CaCO_3$, что препятствует формированию твердого раствора оксидов лантаноидов и способствует кристаллизации РЗЭ в виде индивидуальных фаз оксидов La_2O_3 , CeO_2 , Pr_6O_{11} и Nd_2O_3 .
- 4. Впервые предложены новые перспективные способы разделения оксидов РЗЭ и кальция с использованием водного раствора сахарозы и тяжелой жидкости дийодметана.
- 5. Установлено, что в результате сернокислотной обработки смеси карбоната кальция и оксидов РЗЭ в присутствии H_2O_2 происходит эффективное разделение сульфатов РЗЭ и кальция. При температуре 20 °C в жидкую фазу переходят хорошо растворимые сульфаты La, Ce, Pr, Nd, Sm, а твердая фаза представляет собой осадок малорастворимого гипса $CaSO_4 \times 2H_2O$.
- 6. Установлено, что в азотнокислотном растворе происходит эффективное разделение оксалатов кальция и РЗЭ при температуре 90-95 °C с образованием чистых кристаллов $Ln_2(C_2O_4)_3 \times 9.5H_2O$ (98-99 масс.%) с общим выходом 80-81 %.

Положения, выносимые на защиту

- результаты разработки метода попутного извлечения РЗЭ из ЭФК в виде осадков $CaSO_4 \times 0.5H_2O$ в присутствии примесной фазы $Na_2[SiF_6]$;
- результаты разработки методики экспрессного рентгенофлуоресцентного анализа
 La, Ce, Pr, Nd и Sm в промышленных осадках-шламах CaSO₄×0.5H₂O;
- результаты гетерогенной оксалатной конверсии сульфатного осадка-шлама с целью удаления примесей F, Na, Al, Si, P, S, Ti, Mn, Fe, Th, U;
- результаты термической обработки соединений кальция и РЗЭ (оксалаты и карбонаты) с целью получения концентратов с высоким содержанием РЗЭ;
- результаты разработки метода разделения оксидов P3Э от CaO и CaCO₃ с использованием растворов $C_{12}H_{22}O_{11}$, HNO₃, H_2SO_4 и тяжелой жидкости CH_2I_2 ;

– результаты разработки метода получения чистых кристаллов $Ln_2(C_2O_4)_3 \times 9.5H_2O$ и твердого раствора оксидов РЗЭ на основе структуры CeO_2

Практическая значимость работы

- 1. Исследованы и разработаны методы получение оксалатных, сульфатных и оксидных концентратов РЗЭ (содержание основной фазы 98-99 масс. %) из сульфатных осадков-шламов, выделенных из упаренной ЭФК. Предложенные в работе методы могут быть полезными при разработке технологии попутного извлечения лантаноидов на существующих предприятиях производства ЭФК и минеральных удобрений без передела используемого оборудования.
- 2. Впервые разработана неразрушающая методика экспрессного рентгенофлуоресцентного определения РЗЭ в осадках CaSO₄×0.5H₂O, отвечающая III точности согласно OCT 41-08-221-04. Использование категории регрессионного анализа спектральных данных позволяет разделить наложения близких спектральных линий La, Ce, Pr, Nd, Sm. Данная методика может быть рекомендована для определения содержания РЗЭ в фосфогипсовых и фосфополугидратных отходах.
- 3. Установлено, что оксиды РЗЭ цериевой группы способствуют разложению карбоната кальция при температуре 736 °C по сравнению с более высокой температурой разложения чистого кальцита 883 °C, что имеет практическое значение в технологии термического разложения CaCO₃.
- 4. Установлено, что термическое разложение на воздухе изоморфной смеси оксалатов РЗЭ, в которой преобладает $Ce_2(C_2O_4)_3 \times nH_2O$, завершается образованием твердого раствора оксидов РЗЭ при достаточно низкой температуре 375 °C по сравнению с температурами разложения для чистых оксалатов La, Nd, Pr 700-900 °C.

Апробация работы. Основные результаты научной работы были представлены на IX, X, XI, XII и XIII Международных конгрессах молодых ученых по химии и химической технологии» (Москва 2013, 2014, 2015, 2016 и 2017) и научной конференции «Физико-химические основы разработки новых материалов инновационных технологий» (Москва 2016). Материалы работы были представлены на «Отрытых научно-исследовательских конкурсах стипендий имени членакорреспондента РАН Ягодина Г. А.» и отмечены первым местом в 2015 и 2017 г.

Личный вклад автора состоит в анализе научной литературы, планировании и проведении экспериментальных исследований и обработке полученных результатов.

Публикации по теме диссертации. Основное содержание работы опубликовано в 8 статьях рецензируемых научных журналов из перечня ВАК РФ, в том числе 5 публикаций, включенных в научные базы Scopus, Web of Science, а также в 2 статьях в сборниках научных трудов университета и 9 тезисах докладов на российских и международных научных конференциях.

Объем и структура работы. Диссертационная работа состоит из введения, обзора литературы, экспериментальной части, обсуждения результатов, выводов и списка цитируемой литературы, включающего 199 наименований. Работа изложена на 145 страницах печатного текста и содержит 33 рисунка и 31 таблицу.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении (первая глава) обоснована актуальность исследований, научная новизна, положения, выносимые на защиту, практическая значимость диссертационной работы, сформулирована цель работы и намечены конкретные задачи исследования.

Литературный обзор представлен во второй главе диссертации, в котором приведены сведения об областях применения и технологии получения РЗЭ из минералов, разделении и аналитическом определении лантаноидов. Рассмотрены возможные источники и методы выделения РЗЭ в процессе получения экстракционной фосфорной кислоты: жидкая фаза ЭФК и твердые фазы: фосфогипс, фосфополугидрат сульфата кальция и сульфатные осадки-шламы. Изложены пути включения РЗЭ в структуру сульфата кальция в виде фосфатов и двойных сульфатов РЗЭ, а также возможное влияние гексафторосиликата натрия на извлечение РЗЭ. С целью поиска возможных методов выделения и очистки РЗЭ рассмотрены методы синтеза и переработки оксалатных и оксидных соединений лантаноидов, также ИХ кристаллическая структура, термическое разложение и методы растворения.

Экспериментальная часть (третья глава) содержит описание использованных реактивов и технологических образцов, стандартных и разработанных методик исследования. В качестве объекта исследования выступает промышленный осадок CaSO₄×0.5H₂O, содержащий 3.5-4.0 масс.% P3Э и 20-22 масс.% Na₂[SiF₆], выделенный в процессе упаривания ЭФК на заводе ЗАО «ФосАгро-Череповец». Методами массспектрометрии с индуктивно связанной плазмой, атомно-эмиссионной спектрометрии с индуктивно связанной плазмой, ионометрии, фотометрии и гравиметрии определен химический состав сульфатного осадка-шлама, содержащего РЗЭ (таблица 1).

Таблииа 1.	Результаты	химического	анализа	сульфатного	осадка-шлама	ЭФК.
				- J · · · · · · · · · · · · · ·		-

	% масс.		% масс.		% масс.		% масс.		% масс.
Li	0.00032	Ti	0.026	Rb	0.00051	Ce	1.7	Yb	0.0019
F	12.8	V	< 0.00003	Sr	0.58	Pr	0.22	Lu	0.00019
Na	6.08	Cr	< 0.00002	Y	0.078	Nd	0.84	Hf	0.00021
Mg	0.017	Mn	0.011	Zr	0.00034	Sm	0.13	Ta	0.000045
Al	0.27	Fe	0.17	Nb	0.00078	Eu	0.035	W	0.00011
Si	3.16	Co	< 0.000033	Mo	0.000068	Gd	0.12	Hg	< 0.00005
P	1.802	Ni	0.00038	Cd	< 0.0000082	Tb	0.011	Pb	0.00065
S	12.2	Cu	0.0016	Sn	0.00081	Dy	0.035	Th	0.0012
K	0.15	Zn	0.034	Sb	0.000013	Но	0.0044	U	0.00013
Ca	12.9	As	< 0.00002	Ba	0.0034	Er	0.0088		
Sc	< 0.00006	Se	< 0.00007	La	0.65	Tm	0.00039	Ln	3.84

Важное место занимает аналитическая часть работы, посвященная определению содержания РЗЭ и примесей F, Na, Ca, Al, Si, P, S, Ti, Mn, Fe, Sr, Th, U на различных этапах получения чистых сульфатов, оксалатов и оксидов РЗЭ. Впервые разработана экспрессная неразрушающая методика рентгенофлуоресцентного определения РЗЭ в осадках CaSO₄×0.5H₂O, отвечающая III категории точности согласно ОСТ 41-08-221-04. Применение линейного регрессионного анализа для обработки спектров рентгеновской флуоресценции позволяет разделить перекрывания близких спектральных линий L-серии La, Ce, Pr, Nd и Sm (рисунок 1). При исследовании рентгеновских спектров многоэлементных образцов нами предложено моделирование на основе суперпозиции спектров индивидуальных соединений РЗЭ с учетом фона.

Рисунок 1. Рентгеновские спектры образцов, содержащих Ca, Sr и смесь РЗЭ.

Обсуждение результатов представлено в четвертой главе диссертации.

1. Механизм образования сульфатных осадков, содержащих РЗЭ, и методов их очистки. На первом этапе работы исследован процесс формирования сульфатных осадков, содержащих РЗЭ, из полугидратной ЭФК. Полугидрат сульфата кальция CaSO₄×0.5H₂O выступает в качестве абсорбента при извлечении РЗЭ из растворов ортофосфорной кислоты (38 масс. % P_2O_5) в виде двух типов твердых растворов $CaSO_4 \times 0.5H2O$ – $LnPO_4 \times 0.5H2O$ и $CaSO_4 \times 0.5H_2O$ – $NaLn(SO_4)_2 \times H_2O$. Введение $Na_2[SiF_6]$ значительно улучшает (в 6-8 раз) сорбционные свойства $CaSO_4 \times 0.5H_2O_5$ поскольку фаза Na₂[SiF₆] является источником катионов натрия, что благоприятствует созданию оптимального соотношения Na:Ln = 1:1 для выделения РЗЭ из жидкой фазы в осадок в виде твердого раствора $CaSO_4 \times 0.5H_2O - NaLn(SO_4)_2 \times H_2O$. Гексафторосиликат натрия и полугидрат сульфата кальция имеют близкие значения плотностей и растворимостей в растворе H₃PO₄. В связи с этим суспензия кристаллов Na₂[SiF₆] и $CaSO_4 \times 0.5H_2O$ в растворе H_3PO_4 имеет практически равную скорость соосаждения. Повышение концентрации натрия в виде Na₂[SiF₆] на поверхностях граней кристаллов $CaSO_4 \times 0.5H_2O$ способствует включению P3Э в структуру $CaSO_4 \times 0.5H_2O$ из растворов ЭФК на основе замещения $\{2Ca^{2+} = Na^+ + Ln^{3+}\}$. Высокая скорость достижения равновесия в системе $CaSO_4 \times 0.5H_2O - NaLn(SO_4)_2 \times H_2O$ объясняется более простым механизмом гетеровалентного замещения $\{2Ca^{2+} = Na^+ + Ln^{3+}\}$ на основе единой анионной подрешетки в отличие от системы $CaSO_4 \times 0.5H_2O$ $LnPO_4 \times 0.5H_2O$. Близость значений радиусов катионов Ca^{2+} 0.104 нм, Na^+ 0.098 нм и La^{3+} $-Sm^{3+}$ 0.104-0.097 нм способствует этому процессу.

Предложенный механизм образования сульфатного осадка-шлама ЭФК, содержащего РЗЭ и Na₂[SiF₆], является важным этапом концентрирования РЗЭ. Он может быть использован при разработке технологии попутного извлечения РЗЭ в условиях существующих производств ЭФК и минеральных удобрений практически без передела используемого оборудования. В результате получаемая экстракционная фосфорная кислота становиться более чистой, так как освобождается от многих примесей, в том числе соединений F, Na, Ca, Al, Si, S, Ti, Mn, Fe, Sr, Th, U.

С целью поиска способов концентрирования РЗЭ и удаления примесей фтора и кремния исходный сульфатный осадок-шлам, содержащий до 3.5-4.0 масс. % РЗЭ и 20-22 масс. % Na₂[SiF₆], подвергали термической обработке. Методами термогравиметрического и рентгенофазового анализов установлено разложение фаз

Са SO_4 и $Na_2[SiF_6]$, а также образование термически устойчивых соединений сложного состава: фторапатит $Ca_{10}(PO_4)_6F_2$, фторсульфат $Na_6Ca_4(SO_4)_6F_2$ и оксофосфат $Ca_8Ln_2(PO_4)_6O_2$. Термический способ удаления соединений F, Si, S требует значительных энергетических затрат и сложного химического вскрытия отожжённых образцов. Поэтому дальнейшую разработку методов очистки исходного сульфатного осадка-шлама проводили при относительно невысоких температурах $20\text{-}100\,^{\circ}\text{C}$.

В результате гетерогенной оксалатной конверсии сульфатного осадка-шлама при температуре 95 °C твердая фаза, содержащая РЗЭ, освобождается от примесных соединений F, Na, Al, Si, P, S, Ti, Mn, Fe, Th, U (таблица 2). В основе гетерогенной конверсии сульфатного осадка-шлама, содержащего РЗЭ, в оксалатную форму имеют место следующие химические превращения:

$$\begin{split} \text{CaSO}_{4} \times 0.5 \text{H}_{2} \text{O} + (\text{NH}_{4})_{2} \text{C}_{2} \text{O}_{4} + 0.5 \text{H}_{2} \text{O} &\rightarrow \text{CaC}_{2} \text{O}_{4} \times \text{H}_{2} \text{O} \downarrow + (\text{NH}_{4})_{2} \text{SO}_{4} \\ \text{CaHPO}_{4} \times 2 \text{H}_{2} \text{O} + (\text{NH}_{4})_{2} \text{C}_{2} \text{O}_{4} + 0.5 \text{H}_{2} \text{O} &\rightarrow \text{CaC}_{2} \text{O}_{4} \times \text{H}_{2} \text{O} \downarrow + \text{NH}_{4} \text{H}_{2} \text{PO}_{4} + \text{NH}_{3} \uparrow \\ 2 \text{NaLn}(\text{SO}_{4})_{2} \times \text{H}_{2} \text{O} + 3(\text{NH}_{4})_{2} \text{C}_{2} \text{O}_{4} \cdot + (\text{n-2}) \text{H}_{2} \text{O} &\rightarrow \text{Ln}_{2} (\text{C}_{2} \text{O}_{4})_{3} \times \text{nH}_{2} \text{O} \downarrow + 3(\text{NH}_{4})_{2} \text{SO}_{4} + \text{Na}_{2} \text{SO}_{4} \\ 2 \text{LnPO}_{4} \times 0.5 \text{H}_{2} \text{O} + 3(\text{NH}_{4})_{2} \text{C}_{2} \text{O}_{4} + (\text{n-1}) \text{H}_{2} \text{O} &\rightarrow \text{Ln}_{2} (\text{C}_{2} \text{O}_{4})_{3} \times \text{nH}_{2} \text{O} \downarrow + 2 \text{NH}_{4} \text{H}_{2} \text{PO}_{4} + 4 \text{NH}_{3} \uparrow \\ 2 \text{Nn}_{4} \times 0.5 \text{H}_{2} \text{O} &\rightarrow \text{Nn}_{4} \times 0.5 \text{H}_{2} \text{O} &\rightarrow \text{Nn}_{4} \times 0.5 \text{H}_{2} \text{O} \downarrow + 2 \text{Nn}_{4} \times 0.5 \text{H}_{2} \text{O} \\ 2 \text{Nn}_{4} \times 0.5 \text{H}_{2} \times 0.5 \text{Nn}_{4} \times 0.5 \text{$$

Таблица 2. Результаты химического анализа образцов, содержащих РЗЭ, масс.%

	Оксалат-	Упаренный		Оксалат-	Упаренный		Оксалат-	Упаренный
	ный осадок	фильтрат		ный осадок	фильтрат		ный осадок	фильтрат
Li	< 0.00001	0.00044	Cu	< 0.0004	0.0013	Sm	0.16	0.0012
F	1.99	7.94	Zn	< 0.0008	0.031	Eu	0.042	0.00034
Na	0.11	3.2	As	< 0.0008	< 0.0001	Gd	0.11	0.0012
Mg	< 0.0007	0.0072	Se	< 0.006	< 0.0002	Tb	0.011	0.00019
Al	0.043	0.23	Rb	< 0.0001	< 0.0004	Dy	0.039	0.0012
Si	0.04	2.047	Sr	0.43	0.001	Но	0.0048	0.00023
P	0.041	4.626	Y	0.1	0.0039	Er	0.0070	0.00049
S	< 0.1	10.4	Zr	< 0.0003	0.00046	Tm	0.00040	0.000036
K	< 0.002	0.18	Nb	< 0.0002	0.00033	Yb	0.0013	0.0001
Ca	16.0	0.027	Mo	< 0.00009	0.000017	Lu	0.00010	0.0000068
Sc	< 0.00006	< 0.0003	Cd	< 0.00002	< 0.000003	Hf	< 0.00003	< 0.00003
Ti	< 0.0004	0.024	Sn	< 0.0002	< 0.00002	Ta	< 0.00007	< 0.00002
V	< 0.0001	0.0018	Sb	< 0.00005	0.0000096	W	< 0.00003	< 0.000008
Cr	< 0.0008	< 0.00007	Ba	0.0016	0.00034	Hg	< 0.00002	< 0.000003
Mn	0.00088	0.001	La	0.96	0.0031	Pb	0.0013	0.0007
Fe	< 0.009	0.22	Ce	2.4	0.0097	Th	0.00093	0.00012
Co	< 0.00005	< 0.000006	Pr	0.30	0.0015	U	< 0.00002	0.00007
Ni	< 0.0009	< 0.0001	Nd	1.1	0.0064	Ln	5.236	0.0296

Примесные элементы Al, Ti, Mn, Fe, Th, U с компонентами жидкой фазы образуют прочные, хорошо растворимые сульфатные, фосфатные и оксалатные

комплексные соединения. В результате конверсии РЗЭ практически не переходят в жидкую фазу. В процессе конверсии раствор насыщается сульфатом и дигидрофосфатом аммония (NH₄)₂SO₄ и NH₄H₂PO₄. Увеличение концентраций данных солей в нагретой жидкой фазе (10-15 масс.%) способствует практически полному удалению Na₂[SiF₆] в результате образования хорошо растворимых солей NaH₂PO₄, Na₂SO₄ и (NH₄)₂[SiF₆]. В результате этого до 95 % Na₂[SiF₆], переходит в жидкую фазу, оставшаяся часть Na₂[SiF₆] подвергается гидролизу, который завершается образованием незначительного количества малорастворимой примесной фазы CaF₂. Отделение Na₂[SiF₆] другими способами является менее эффективным и более трудоемким. Жидкая фаза, содержащая полезные компоненты (NH₄)₂SO₄ и NH₄H₂PO₄ вместе с небольшим количеством примесей, может возвращаться в производство минеральных удобрений.

Полученный оксалатный осадок в основном представляет собой 80 масс. % $CaC_2O_4 \times H_2O$, 16 масс. % смесь изоморфных оксалатов $Ln_2(C_2O_4)_3 \times nH_2O$, а также 4 масс. % примесной фазы CaF₂. В результате оксалатной конверсии суммарное содержание РЗЭ в твёрдой фазе увеличивается на 36 % без существенных потерь РЗЭ в жидкую фазу (около 1 %). Содержание радиоактивных элементов также уменьшается в результате осуществления гетерогенной оксалатной конверсии (Th – на 22-23 %, U – на 84-85 %), до уровня 10⁻⁴ масс. %. Содержание высокотоксичных элементов (As, Cd, Hg, Pb) в полученном оксалатном осадке очень незначительно (менее 10-3 масс. %). Полученные большое дальнейшего положительные результаты имеют значение ДЛЯ концентрирования РЗЭ в виде оксалатов или оксидов.

2. Разделение оксалатов кальция и РЗЭ с помощью термической обработки.

С целью дальнейшего концентрирования РЗЭ проведено термогравиметрическое рентгенографическое исследование фазовых превращений полученной смеси оксалатов кальция и РЗЭ. На рисунке 2 представлена термограмма совместного разложения $CaC_2O_4 \times H_2O$ и $Ln_2(C_2O_4)_3 \times nH_2O$ в интервале температур 20-1400 °C. Появление небольшого экзотермического при температуре 385 °C пика соответствующего перегиба на кривой ТГ указывает на присутствие оксалатов РЗЭ в образце. Реакции дегидратации оксалатов кальция и РЗЭ, а также реакция разложения карбоната кальция, сопровождаются эндотермическими эффектами на кривой ДСК. В отличие от данных процессов, реакции окисления оксалатов кальция и лантаноидов на воздухе сопровождаются экзотермическими эффектами.

Рисунок 2. Термограмма совместного разложения оксалатов кальция и РЗЭ на воздухе

Установленные фазовые превращения в процессе термического разложения оксалатов кальция и РЗЭ на воздухе представлены в таблице 3.

Таблица 3. Этапы совместного термического разложения оксалатов кальция и РЗЭ.

CTOWN TOTAL WAS A TOTAL	Температурный	Потеря массы %		
Стадии термического разложения	интервал °C	Экперим.	Теоретич.	
Обезвоживание кристаллогидратов оксалатов:				
$CaC_2O_4 \times mH_2O \rightarrow CaC_2O_4 + mH_2O \uparrow$	150-190	13.48	14.40	
$Ln_2(C_2O_4)_3 \times nH_2O \rightarrow Ln_2(C_2O_4)_3 + nH_2O \uparrow$				
Окисление оксалатов РЗЭ на воздухе:				
$Ce_2(C_2O_4)_3 + 2O_2 \rightarrow 2CeO_2 + 6CO_2\uparrow$	375-385	4.11	3.89	
$Ln_2(C_2O_4)_3 + 6CeO_2 \rightarrow Ln_2O_3 + 3Ce_2O_3 + 6CO_2 \uparrow$				
Окисление оксалата кальция на воздухе:				
$CaC_2O_4 + 2CeO_2 \rightarrow CaCO_3 + Ce_2O_3 + CO_2 \uparrow$	390-442	16.61	15.71	
$2Ce_2O_3 + O_2 \rightarrow 4CeO_2$				
Разложение карбонатов:				
$CaCO_3 + Ln_2O_3 \rightarrow CaO + Ln_2O_2CO_3$	650-736	22.63	24.45	
$Ln_2O_2CO_3 \rightarrow Ln_2O_3 + CO_2\uparrow$				

В результате отжига при температуре выше 442 °C оксалат кальция, содержащий оксалаты РЗЭ, переходит в карбонатную форму кальцита $CaCO_3$, который препятствует формированию твердого раствора оксидов лантаноидов и способствует кристаллизации РЗЭ в виде индивидуальных фаз оксидов La_2O_3 , CeO_2 , Pr_6O_{11} и Nd_2O_3 .

Повышение температуры выше 736 °C сопровождается разложением CaCO₃ с образованием отдельных фаз CaO и твердого раствора оксидов P39, как показано в

таблице 4. Установлено, что оксиды РЗЭ цериевой группы La_2O_3 , CeO_2 , Pr_6O_{11} и Nd_2O_3 способны инициировать разложение $CaCO_3$ при температуре 736 °C, т.е. на 150 градусов ниже температуры разложения чистого кальцита 883 °C. Это явление имеет важное научное и практическое значение в технологических процессах разложения $CaCO_3$.

Таблица 4. Рентгенофазового анализа оксида кальция, содержащего оксиды РЗЭ

Образ	зец	Оксид кальци	я СаО, ІСГ	DD 48-1467	Твердый раствор оксидов Р		
d, Å	I, %	d, Å	I, %	h k l	d, Å	I, %	h k l
3.177	100				3.160	100	1 1 1
2.776	38	2.778	40	1 1 1			
2.752	28				2.756	30	200
2.405	89	2.405	100	200			
1.9470	58				1.9394	38	220
1.7011	61	1.7008	51	220			
1.6603	35				1.6535	28	3 1 1
1.5899	6				1.5767	5	222
1.4511	17	1.4504	17	3 1 1			
1.3894	16	1.3887	14	2 2 2			
1.3769	6				1.3724	5	400
1.2635	11				1.2612	5	3 3 1
1.2315	6				1.2259	9	420
1.2034	9	1.2026	6	400			

Нами предложены оригинальные способы разделения продуктов термического разложения оксалатного осадка (оксидов РЗЭ и кальция) с использованием тяжелой жидкости дийодметана CH_2I_2 и водного раствора сахарозы $C_{12}H_{22}O_{11}$.

Первый способ заключается в разделении оксидов кальция и РЗЭ в водных растворах $C_{12}H_{22}O_{11}$. При температуре 20-25 °C в водном растворе 35 масс. % сахарозы растворимость CaO в 100 раз выше, чем в воде, в результате образования сахарата кальция. Соответствующие соединения РЗЭ неустойчивы и полностью разлагаются в водном растворе. Установлено, что обработка раствором сахарозы приводит к практически полному удалению CaO в жидкую фазу, как показано на рисунке 3.

Второй способ основан на существенном различии в значениях плотности CaO (3.35 г/см^3) и CaF₂ (3.18 г/см^3) , с одной стороны, и оксидов La-Nd $(5.96-7.22 \text{ г/см}^3)$ с другой стороны. Тяжелую жидкость дийодметан CH_2I_2 ($\rho = 3.33 \text{ г/см}^3$), инертную по отношению к оксидам кальция и P3Э, применяли для разделения данных соединений. Установлено, что тяжелая фракция обогащается оксидами P3Э, а легкая фракция содержит преимущественно CaO и CaF₂ с частичным разделением фаз (рисунок 4).

Рисунки 3-4. Рентгеновские спектры образцов, полученных при разделении CaO и Ln_2O_3

Разделение смеси $CaCO_3$ и оксидов P3Э осуществляли с помощью азотнокислотной обработки. В растворе HNO $_3$ растворимость отожженных оксидов P3Э достаточно низкая. Как показано на рисунке 5, наличие малорастворимой примеси CaF_2 не позволяет полностью удалить кальций в виде хорошо растворимой соли $Ca(NO_3)_2$.

Более успешное разделение $CaCO_3$, CaF_2 и оксидов P39 выполнили с помощью сернокислотной обработки. При температуре $20\,^{\circ}C$ сульфаты P39 обладают более высокой растворимостью (в единицах моль / кг H_2O) по сравнению с сульфатом кальция: $Pr_2(SO_4)_3$ в 15 раз, $Ce_2(SO_4)_3$ в 11 раз, $Nd_2(SO_4)_3$ в 8 раз и $La_2(SO_4)_3$ в 3 раза. С целью ускорения восстановления CeO_2 и Pr_6O_{11} в сернокислотный раствор вносили стехиометрическое количество пероксида водорода H_2O_2 .

Рисунки 5-6. Рентгеновские спектры образцов, полученных при разделении CaCO₃ и Ln₂O₃

Как показано на рисунке 6, при сернокислотной обработке происходит образование чистого раствора сульфатов РЗЭ и практически полное осаждение кальция в виде $CaSO_4 \times 2H_2O$ и CaF_2 . Термическая переработка 450-500 °C осадка, содержащего оксалаты кальция и РЗЭ, и последующая сернокислотная обработка, является перспективным способом выделения и концентрирования РЗЭ в виде сульфатов.

3. Получение чистых оксалатных и оксидных соединений РЗЭ. Важной частью работы является разработка способа выделения РЗЭ без использования термической обработки оксалатного осадка. Окисление оксалатов кальция и РЗЭ, а также полное удаление примеси фтора в виде HF, проведено в растворе 15 масс. % HNO₃ при температуре 95-100 °C. В полученный азотнокислотный раствор $Ln(NO_3)_3$ и $Ca(NO_3)_2$ вносили стехиометрическое количество щавелевой кислоты и затравку оксалатов РЗЭ при медленном перемешивании и температуре 90-95 °C. Это позволило получить чистые кристаллы $Ln_2(C_2O_4)_3 \times nH_2O$ (98-99 масс. %) с высоким выходом 80 %. Химический анализ образца $Ln_2(C_2O_4)_3 \times nH_2O$ приведен в таблице 5. Кристаллизация фазы $Ln_2(C_2O_4)_3 \times nH_2O$ обеспечивает глубокую очистку от Ca и Sr.

Таблица 5. Результаты химического анализа оксалатного концентрата РЗЭ

	% масс.		% масс.		% масс.		% масс.		% масс.
Li	< 0.00005	Ti	< 0.0006	Rb	< 0.0002	Ce	17	Yb	0.015
F	< 0.02	V	< 0.0009	Sr	0.0038	Pr	2.6	Lu	0.0013
Na	0.0041	Cr	< 0.004	Y	0.88	Nd	9.7	Hf	0.00013
Mg	0.011	Mn	< 0.001	Zr	0.00013	Sm	1.8	Ta	< 0.0003
Al	0.029	Fe	0.0014	Nb	< 0.0003	Eu	0.47	W	< 0.0003
Si	0.002	Co	< 0.0003	Mo	< 0.0003	Gd	1.3	Hg	< 0.00007
P	< 0.001	Ni	< 0.004	Cd	< 0.0001	Tb	0.13	Pb	0.00092
S	< 0.002	Cu	< 0.004	Sn	< 0.0008	Dy	0.43	Th	0.00075
K	0.0076	Zn	0.0018	Sb	< 0.00003	Но	0.05	U	< 0.00002
Ca	0.31	As	< 0.0002	Ba	0.00024	Er	0.074		
Sc	< 0.002	Se	< 0.0007	La	5.3	Tm	0.004	ΣLn	39.75

Исследование полученных кристаллов $Ln_2(C_2O_4)_3 \times nH_2O$ выполнено методами электронной сканирующей микроскопии, рентгенографии и термогравиметрии. По результатам термогравиметрического анализа (рисунок 7) содержание воды в образце соответствует формуле $Ln_2(C_2O_4)_3 \times 9.5H_2O$. Установлено ступенчатое удаление воды из структуры оксалатного концентрата РЗЭ при температурах 118 °C (9.0 моль) и 375 °C (0.5 моль, с разложением оксалатных групп). Индицирование линий рентгенограммы $Ln_2(C_2O_4)_3 \times 9.5H_2O$ с указанием индексов hkl позволило определить параметры

элементарной ячейки: моноклинная сингония (прост. группа $P2_1/c$), а = 1.1243(2) нм; b = 0.9591(2) нм; с = 1.0306(2) нм; β = $114.12(1)^\circ$, Z = 2; V = 1.0137(5) нм³. По результатам микроскопического анализа (рисунок 8) кристаллы $Ln_2(C_2O_4)_3 \times 9.5H_2O$ имеют характерную моноклинную огранку и достаточно крупный размер (0.5-1.0 мм).

Рисунки 7-8. Термограмма разложения и микроскопический анализ $Ln_2(C_2O_4)_3 \times 9.5H_2O_4$

Термическое разложение оксалатного концентрата P39, в котором преобладает $Ce_2(C_2O_4)_3 \times nH_2O$, завершается при достаточно низкой температуре $374\,^{\circ}C$ по сравнению с температурами разложения $700\text{-}900\,^{\circ}C$ чистых оксалатов La и Nd до оксидов. Результаты проведенного рентгенофазового и термогравиметрического анализов не обнаружили формирование промежуточных фаз карбонатов и оксокарбонатов P39, которое обычно имеет место при разложении чистых оксалатов La, Pr, Nd.

Разложение $Ln_2(C_2O_4)_3 \times 9.5H_2O$ на воздухе завершается образованием твердого раствора оксидов РЗЭ на основе структуры CeO_2 . Результаты индицирования линий рентгенограммы оксидного концентрата РЗЭ приведены в таблице 4, рассчитаны параметры элементарной ячейки: кубическая сингония (прост. группа Fm3m), а = 0.5487(15) нм, Z=4; V=0.1652(8) нм 3 . По сравнению со структурой CeO_2 , объем элементарной ячейки твердого раствора оксидов РЗЭ больше на 4.25~% в результате замещения катиона Ce^{4+} на более крупные по размеру катионы La^{3+} и Nd^{3+} .

В присутствии $CaCO_3$ твердый раствор оксидов P3Э образуется при температуре выше 736 °C. Чистый оксалатный концентрат $Ln_2(C_2O_4)_3 \times 9.5 H_2O$, не содержащий примесей кальция, разлагается с образованием твердого раствора оксидов P3Э при существенно более низкой температуре 374 °C. Наличие фазы $CaCO_3$ замедляет процесс формирование твердого раствора оксидов P3Э на основе структуры CeO_2 .

Выделенные оксалатные и оксидные концентраты можно непосредственно использовать с целью получения индивидуальных соединений La, Ce, Pr, Nd и Sm.

выводы

- 1. Предложенный метод позволяет обеспечить попутное извлечение РЗЭ из сульфатных осадков-шламов ЭФК, содержащих 3.5-4.0 масс. % РЗЭ и предотвратить безвозвратную потерю La, Ce, Pr, Nd, Sm при внесении РЗЭ-содержащих удобрений в почву. Присутствие $Na_2[SiF_6]$ в растворе ЭФК способствует включению РЗЭ в структуру $CaSO_4 \times 0.5H_2O$ на основе гетеровалентного замещения $2Ca^{2+} = Na^+ + Ln^{3+}$ и увеличивает степень извлечения РЗЭ в твердую фазу в 6-8 раз.
- 2. Разработана экспрессная неразрушающая методика рентгенофлуоресцентного анализа РЗЭ в осадках $CaSO_4 \times 0.5H_2O$, отвечающая III категории точности согласно ОСТ 41-08-221-04. Линейный регрессионный анализ спектров рентгеновской флуоресценции позволяет разделить перекрывания близких спектральных линий лантаноидов.
- 3. Предложен метод гетерогенной оксалатной конверсии сульфатного осадкашлама ЭФК, содержащего РЗЭ. Метод позволяет провести глубокую очистку от примесных соединений F, Na, Al, Si, P, S, Ti, Mn, Fe, Th, U и получить осадок CaC₂O₄×H₂O, содержащий до 16 масс. % оксалатов La-Sm практически без потерь РЗЭ.
- 4. Установлено, что при отжиге оксалатного осадка $CaC_2O_4 \times H_2O$ и $Ln_2(C_2O_4)_3 \times nH_2O$ в интервале температур 442-650° C, образуется кальцит $CaCO_3$, препятствующий формированию твердого раствора оксидов P3Э и способствующий сохранению индивидуальных фаз La_2O_3 , CeO_2 , Pr_6O_{11} и Nd_2O_3 . При этом оксиды La_2O_3 и Nd_2O_3 инициируют разложение $CaCO_3$ при более низкой температуре 736 °C по сравнению температурой разложения чистого кальцита 883 °C.
- 5. Предложены новые оригинальные способы разделения оксидов РЗЭ и кальция с помощью тяжелой жидкости дийодметана CH_2I_2 и водного раствора сахарозы $C_{12}H_{22}O_{11}$. Установлено, что сернокислотная обработка смеси $CaCO_3$ и оксидов РЗЭ приводит к образованию чистого сульфатного концентрата РЗЭ в жидкой фазе и практически полному удалению примесей кальция в твердую фазу в виде $CaSO_4 \times 2H_2O$.
- 6. Установлено, что в растворе азотной кислоты наблюдается раздельная кристаллизация оксалатов РЗЭ и кальция при температуре 95 °C и внесении затравки оксалатов РЗЭ. При этом получены кристаллы $Ln_2(C_2O_4)_3 \times 9.5H_2O$ (98-99 масс.%) с общим выходом 80-81 %.

Основное содержание работы изложено в следующих публикациях:

а) Статьи в научных журналах из перечня ВАК РФ

- 1. Zinin D.S., Bushuev N.N. Isolation of rare-earth elements from mixtures of calcium and lanthanides oxalates // Russian Journal of Inorganic Chemistry. 2018. V. 63. № 2. P. 251-255.
- 2. Zinin D.S., Bushuev N.N. Nature of influence exerted by Na₂SiF₆ on REE recovery from orthophosphoric acid solution in the course of CaSO₄×0.5H₂O crystallization // Russian Journal of Applied Chemistry. 2017. V. 90. № 3. P. 329-333.
- 3. Zinin D.S., Bushuev N.N., Kuznetsov V.V. X-ray fluorescence determination of La, Ce, Pr, Nd, and Sm in industrial sediments of calcium sulfate using linear regression analysis // Journal of Analytical Chemistry. 2017. V. 72. № 3. P. 279-288.
- 4. Bushuev N.N., Zinin D.S. Thermal decomposition features of calcium and rare-earth oxalates // Russian Journal of Inorganic Chemistry. 2016. V. 61. № 2. P. 161-167.
- 5. Бушуев Н.Н., Зинин Д.С. Гетерогенная конверсия сульфатного концентрата РЗЭ в оксалатную форму // Химическая промышленость сегодня. 2015. № 4. С. 6-15.
- 6. Zinin D.S., Bushuev N.N. Production and physicochemical study of oxalate and oxide REE concentrates // Russian Journal of Applied Chemistry. 2014. V. 87. № 11. P. 1611-1618.
- 7. Бушуев Н.Н., Зинин Д.С., Левин Б.В. Получение чистого оксалатного концентрата редкоземельных элементов // Химическая технология. 2014. № 9. С. 549-555.
- 8. Бушуев Н.Н., Зинин Д.С. Фазовые превращения в процессе термической обработки осадка, содержащего редкоземельные элементы, полученного в результате упаривания полугидратной экстракционной фосфорной кислоты // Химическая промышленность сегодня. 2014. № 5. С. 16-25.

б) Статьи в других изданиях

- 1. Зинин Д.С., Бушуев Н.Н. Влияние гексафторосиликата натрия на фазовые превращения сульфата кальция, содержащего РЗЭ, в процессе термической обработки // Физико-химические характеристики растворов и неорганических веществ: сб. науч. трудов. М.: РХТУ им. Д.И. Менделеева. 2017. Вып. 189. С. 29-40.
- 2. Бушуев Н.Н., Зинин Д.С., Левин Б.В. Получение чистого концентрата РЗЭ из промышленной экстракционной фосфорной кислоты// Физикохимия растворов и неорганических веществ: сб. науч. трудов. М.: РХТУ им. Д.И. Менделеева. 2014. Вып. 187. С. 146-160.
- 3. Зинин Д.С., Бушуев Н.Н. Термическая устойчивость и разделение смеси карбоната кальция и оксидов РЗЭ в растворах минеральных кислот // Успехи в химии и

- химической технологии: сб. науч. трудов. М.: РХТУ им. Д.И. Менделеева. 2017. Т. 31. № 4. С. 37-39.
- 4. Зинин Д.С., Бушуев Н.Н. Разделение оксидов кальция и лантаноидов с использованием дийодметана и водного раствора сахарозы // Успехи в химии и химической технологии: сб. науч. трудов. М.: РХТУ им. Д.И. Менделеева. 2017. Т. 31. № 4. С. 46-48.
- 5. Зинин Д.С., Тюльбенджян Г.С., Бушуев Н.Н. Влияние примеси гексафторосиликата натрия на изоморфное замещение РЗЭ в структуре полугидрата сульфата кальция // Успехи в химии и химической технологии: сб. науч. трудов. М.: РХТУ им. Д.И. Менделеева. 2016. Т. 30. № 1. С. 93-95.
- 6. Зинин Д.С., Тюльбенджян Г.С., Бушуев Н.Н. Получение твердого раствора оксидов РЗЭ на основе структуры оксида церия (IV) // Физико-химические основы разработки новых материалов и инновационных технологий: материалы конференции. М.: РХТУ им. Д.И. Менделеева. 2016. С. 45-47.
- 7. Зинин Д.С., Тюльбенджян Г.С., Бушуев Н.Н. Термическое разложение оксалатов кальция и РЗЭ // Физико-химические основы разработки новых материалов и инновационных технологий: материалы конференции. М.: РХТУ им. Д.И. Менделеева. 2016. С. 41-43.
- 8. Зинин Д.С., Бушуев Н.Н., Кузнецов В.В. Количественное определение примесей РЗЭ в CaC₂O₄×H₂O, CaCO₃ и CaO методом рентгеноспектрального флуоресцентного анализа // Успехи в химии и химической технологии: сб. науч. трудов. М.: РХТУ им. Д.И. Менделеева. 2015. Т. 29. № 1. С. 40-42.
- 9. Зинин Д.С., Бушуев Н.Н. Оксалатная конверсия промышленного образца осадка сульфата кальция, содержащего редкоземельные элементы // Успехи в химии и химической технологии: сб. науч. трудов. М.: РХТУ им. Д.И. Менделеева. 2014. Т. 28. № 2. С. 110-113.
- 10. Бушуев Н.Н., Зинин Д.С. Исследование фазовых превращений промышленного осадка, содержащего редкоземельные элементы (РЗЭ), полученного из упаренной экстракционной фосфорной кислоты (ЭФК) // Успехи в химии и химической технологии: сб. науч. трудов. М.: РХТУ им. Д.И. Менделеева. 2013. Т. 27. № 2. С. 35-39.
- 11. Бушуев Н.Н., Зинин Д.С. Физико-химическое исследование промышленного осадка, содержащего редкоземельные элементы (РЗЭ), полученного из упаренной экстракционной фосфорной кислоты // Успехи в химии и химической технологии: сб. науч. трудов. М.: РХТУ им. Д.И. Менделеева. 2013. Т. 27. № 2. С. 16-21.