•

02.00.04 -

. . .

: - ,

,

. . .

· :

,

-. . . »

. . .

· :

«10» 2013 14.00 . 212.204.11 -

: 125047, , ., .9

«8» 2013 .

. 212.204.11 lypouwla . .

,

•

, ,

(), -4 ,

•

• ;

-4 ;

• ; ;

, (H⁺, Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺),

,

-4 ,

. -4

• _____•

•

,

,

1.

2.

3.

4.

«Ion transport in organic and inorganic membranes» (17-- 2011, 2013); 16-- 2011, 2013). -2011, 2013» (**« «** 07-08-00602-), (**« »**. 5 3 2 120 15 25 133 «Nafion», « 2. _

/ -4 -4 «Supra 50 VP» («LEO», 1 . 1. -«Nexus» «Nicolet» c «Pike Technologies» («MIRacle ATR»). «Netzsch TG 209 F1» 25÷150°C 5 ./ - 10÷20 -0.0001 ³. -001» 5. 24 . «Vario Microcube Elementar»⁴. CHNS-. .().

NaCl 24 . 20÷100° «2 -1» 10 ÷ 6 / $^{+}/Me^{+}$ () -002») **« «** 001» KCl. **3.1.**

,

100÷500 . 30÷70%.

100 .

, 500 .

(- / .) 1

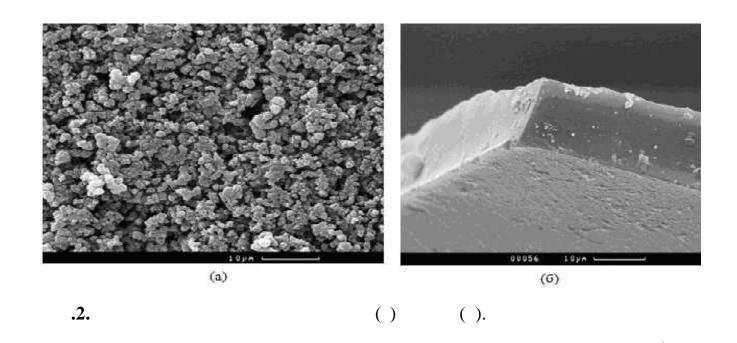
, .1,

300 .

•

~ 6÷6.5 - / 550 .

6.0 5.0 4.0 8 3.0 2.0 1.0 (.2,), (.2,).


.1.

600

400

Время сульфирования, ч.

200

C, H, S, O, Na

.1.

-

1 n .% .% SO_3H , /. /1 . . \mathbf{S} \mathbf{S} 0 Na 0 Na 0.0 0 0 51.7 **6.2** 42.1 0.0 51.5 6.5 42.0 0.0 0.0 $(C_{18}H_{26}O_{11})_n$ 49.2 5.9 42.3 49.0 42.0 2.0 0.2 0.46 1.6 1.0 **6.0** 1.0 $(C_{18}H_{26}O_{11})_5SO_3Na$ 1.5 0.29 0.64 48.3 **5.8** 42.4 2.0 48.5 6.0 42.0 2.0 1.5 $(C_{18}H_{26}O_{11})_7(SO_3Na)_2$ 0.33 47.8 **5.7** 42.4 2.4 **1.7 47.0 6.0** 42.5 2.5 0.74 2.0 $(C_{18}H_{26}O_{11})_3SO_3Na$ **5.0** 0.5 1.09 46.3 **5.2** 42.8 3.2 2.5 46.5 42.5 3.5 2.5 $(C_{18}H_{26}O_{11})_2SO_3Na$ 41.5 **5.0** 43.0 4.4 42.0 **5.0** 5.5 4.5 1 2.00 6.1 43.0 $C_{18}H_{26}O_{11}SO_3Na$ 2 43.5 3.44 34.6 4.2 43.6 10.3 **7.3 35.0** 4.0 10.5 **7.0** $C_{18}H_{26}O_{11}(SO_3Na)_2$

, 210÷2190 /
(.2).

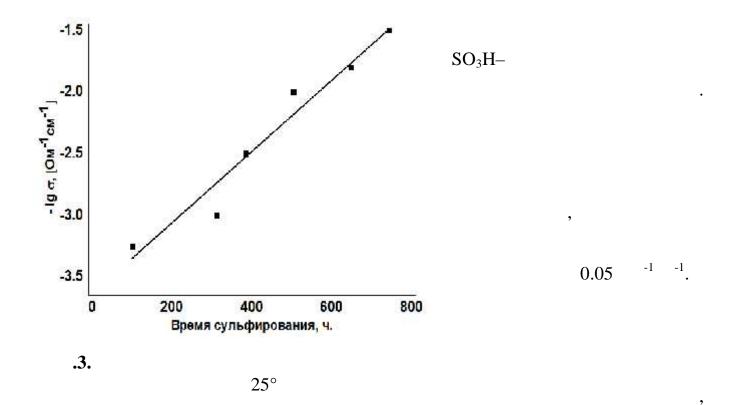
«Nafion» (900÷1100 /), «Gore Select»
(900÷1100 /) «DOWEX» (800 /),

(

·

n SO ₃ H /1		,	, - /.
0.2	(C ₁₈ H ₂₆ O ₁₁) ₅ SO ₃ Na	24	0.46
0.29		48	0.64
0.33	$(C_{18}H_{26}O_{11})_7(SO_3Na)_2$	96	0.74
0.5	(C ₁₈ H ₂₆ O ₁₁) ₃ SO ₃ Na	192	1.07
1	$(C_{18}H_{26}O_{11})_2SO_3Na$	360	2.00
2	C ₁₈ H ₂₆ O ₁₁ SO ₃ Na C ₁₈ H ₂₆ O ₁₁ (SO ₃ Na) ₂	552	3.44

 SO_3H - , 1


(.3) 25, -4 , $\sim 0.07 -1 -1.$

0.07

2

(.3).

•

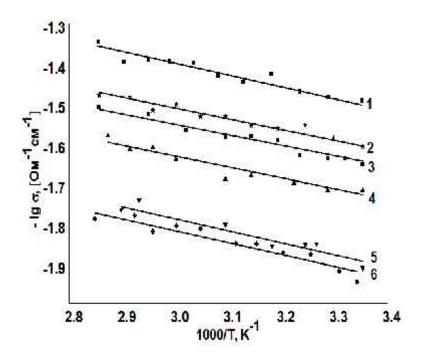
(.3). 150 .

3

	, •	E _a , /
1	48	30.7±0.4
2	96	21.9±0.3
3	192	17.0±0.3
4	360	12.3±0.2
5	552	5.9±0.2

(.4). .4

4


-4

3.2 - /.

/		E _a , /	, .%.
1	-H ⁺	13.5±0.5	60%
2	-Li ⁺	14.3±0.3	43%
3	-Na ⁺	13.7±0.4	42%
4	$-\mathbf{K}^{+}$	14.3±0.4	41%
5	$-\mathbf{R}\mathbf{b}^{+}$	14.7±0.5	34%
6	-Cs ⁺	14.9±0.4	31%

(.4).

, (.4).

.4. (.5).

()

,

		, 2/
0.1M HCl	H ₂ O	(1.4±0.1)·10 ⁻⁶
0.1M LiCl	H ₂ O	(1.5±0.1)·10 ⁻⁷
0.1M NaCl	H ₂ O	(1.2±0.1)·10 ⁻⁷
0.1M KCl	H ₂ O	(1.1±0.1)·10 ⁻⁷
0.1M RbCl	H ₂ O	(9.2±0.6)·10 ⁻⁸
0.1M CsCl	H ₂ O	(8.1±0.6)·10 ⁻⁸

6 H⁺/Me⁺ (²/) 3.2 - / .

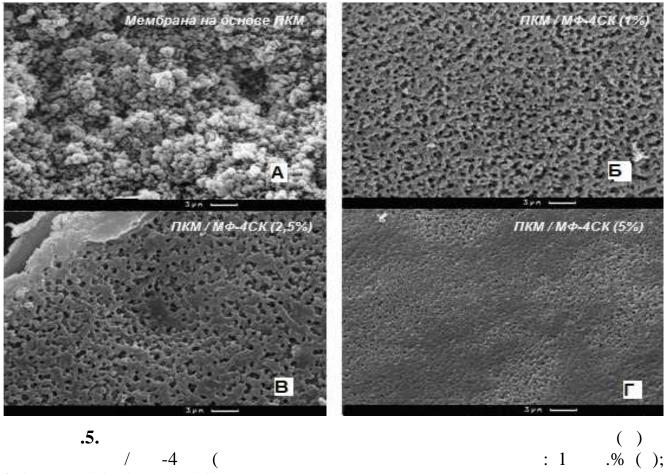
		, 2/
0.1M HCl	0.1M LiCl	(1.5±0.3)·10 ⁻⁶
0.1M HCl	0.1M NaCl	(9.5±0.3)·10 ⁻⁷
0.1M HCl	0.1M KCl	(8.9±0.6)·10 ⁻⁷
0.1M HCl	0.1M RbCl	(8.9±0.6)·10 ⁻⁷
0.1M HCl	0.1M CsCl	(8.8±0.7)·10 ⁻⁷

. $H^{+}\!/Me^{+}$

(.5, 6) ,

•

3.2.


-4 1÷5 .%

1, 2.5 5 .%.

1 .% -4

5 .% -4 (.5,).

(.5 , , ,)

2.5 .% (); 5 .% ()).

,

/ -4

(.7).

,

, (d ~ 300) , ,

. $(\ ^{2}/c) \qquad \qquad / \ \ ^{-4}$

		-4 (1%)	-4 (2.5%)	-4 (5%)
0.1M HCl	H ₂ O	(4.6±0.1)·10 ⁻⁶	(2.3±0.1)·10 ⁻⁷	(2.1±0.1)·10 ⁻⁷
0.1M LiCl	H ₂ O	(9.9±0.1)·10 ⁻⁷	(2.4±0.2)·10 ⁻⁷	(2.2±0.1)·10 ⁻⁷
0.1M NaCl	H ₂ O	(1.3±0.2)·10 ⁻⁶	(1.5±0.1)·10 ⁻⁷	(1.0±0.1)·10 ⁻⁷
0.1M KCl	H ₂ O	(1.1±0.1)·10 ⁻⁶	(2.0±0.1)·10 ⁻⁷	(1.2±0.1)·10 ⁻⁷
0.1M RbCl	H ₂ O	(1.1±0.1)·10 ⁻⁶	(2.1±0.1)·10 ⁻⁷	(1.2±0.1)·10 ⁻⁷
0.1M CsCl	H ₂ O	(1.2±0.1)·10 ⁻⁶	(2.3±0.1)·10 ⁻⁷	(1.1±0.1)·10 ⁻⁷

-4 H^+/Me^+

/ -4

(.7, 8).

 $H^{+}/Me^{+}(^{2}/)$

		-4 1%	-4 2.5%	-4 5%
0.1M HCl	0.1M LiCl	(3.1±0.1)·10 ⁻⁶	$(7.5\pm0.1)\cdot10^{-6}$	(1.3±0.1)·10 ⁻⁵
0.1M HCl	0.1M NaCl	(3.0±0.1)·10 ⁻⁶	(6.3±0.1)·10 ⁻⁶	(1.0±0.1)·10 ⁻⁵
0.1M HCl	0.1M KCl	(3.0±0.1)·10 ⁻⁶	(4.9±0.1)·10 ⁻⁶	(9.0±0.1)·10 ⁻⁶
0.1M HCl	0.1M RbCl	(2.9±0.1)·10 ⁻⁶	(4.9±0.1)·10 ⁻⁶	(9.8±0.1)·10 ⁻⁶
0.1M HCl	0.1M CsCl	(2.9±0.1)·10 ⁻⁶	(4.9±0.1)·10 ⁻⁶	(9.8±0.1)·10 ⁻⁶

/ -4 , (.9).

-4 . ,

-4 ,

/

-1.5 -3.0 ΠΚΜ / ΜΦ-4CK 5% ПКМ / МФ-4СК (5%) ПКМ / МФ-4СК 2,5% ПКМ / МФ-4СК (2,5%) ПКМ / МФ-4СК 1% ПКМ / МФ-4СК (1%) - Ig a, [Om⁻¹cm⁻¹] 5.2 5.2 0.5 - 1g ~ [OM-1*cM-1] -4.0 -3.0 -4.5 2.8 3.0 3.2 3.4 3.4 2.8 3.0 3.2 1000/T,K-1 1000/T, K-1 () () **.6**. 5 2.5 (). 4 .% (1); .% (3) () 9 / -4

		, /	
/ -4	1%	11.2±0.8	9.6±0.6
/ -4	2.5%	8.7±0.9	7.6±0.9
/ -4	5%	7.7±0.4	5.4±0.8

4.

1.

-4 .

2. , -4 5 .%

, 1.5

6 .%

```
3.
4.
30÷70 %.
6.5
                                     60
                                            .%
5.
0.05
1.
                                                         2012. - .2. -
    .4-6.
2.
                                     . //
    .108-111.
3.
                               //
                                                                        -2013. -
           3. –
                 . – 163-168.
4. Novikov, S.S. New filter materials based on spatial structure of globular polymer
   PCM and ion-exchange MF-4SC membrane / S.S. Novikov, A.Yu. Sanderov,
   A.B. Yaroslavlsev // Book of abstracts of International conference "Ion transport in
   organic and inorganic membranes". – Krasnodar, 2011. – P.140-141.
5. Ion-exchange and transport properties of membranes based on sulphonated
  polycarbonatemethacrylate. / S.S. Novikov, S.E. Novikova, A.Yu. Sanderov,
   A.B. Yaroslavlsev. // Book of abstracts of International conference "Ion transport in
   organic and inorganic membranes". – Krasnodar, 2013. – P.124.
           RU2480947
6.
                      . International Classification C08F 8/36; C08F 28/02; C08G
   75/24. /
                                    . 27.12.2012. — RU2480947. — 15 .
                 . 17.09.2011.
```