На правах рукописи

Дудкин Семён Валентинович

Синтез и некоторые свойства гидрированных производных тетраазапорфина и *мезо-*тетра(3-пиридил)порфина

02.00.03 – органическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук

Москва – 2012

Работа выполнена в лаборатории 3-1 ФГУП «Государственный научный центр «Научно-исследовательский институт органических полупродуктов и красителей» (ФГУП «ГНЦ «НИОПИК»)

НАУЧНЫЙ РУКОВОДИТЕЛЬ:	Макарова Елена Александровна				
	кандидат химических наук,				
	старший научный сотрудник				
ОФИЦИАЛЬНЫЕ ОППОНЕНТЫ:	Милаева Елена Рудольфовна,				
	доктор химических наук, профессор,				
	Химический факультет МГУ				
	им. М.В. Ломоносова, зав. лабораторией				
	биоэлементоорганической химии.				
	Казанков Михаил Васильевич,				
	доктор химических наук, профессор,				
	ФГУП «ГНЦ «НИОПИК», ведущий				
	научный сотрудник лаборатории 2-1.				
ВЕДУЩАЯ ОРГАНИЗАЦИЯ:	Московский государственный				
	университет тонких химических				
	технологий им. М.В. Ломоносова				

Защита состоится «02» ноября 2012 г. в 10-00 ч на заседании диссертационного совета Д 212.204.04 при РХТУ им. Д. И. Менделеева (125047 г. Москва, Миусская пл., д. 9) в Актовом зале им. А.П. Бородина.

С диссертацией можно ознакомиться в Информационно-библиотечном центре РХТУ имени Д.И. Менделеева.

Автореферат диссертации разослан _____ 2012 г.

Ученый секретарь диссертационного совета Д 212.204.04, к.х.н.

Кондратова Н.А.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

<u>Актуальность темы</u>. Порфирины и их изоэлектронные тетраазааналоги – тетраазапорфины (ТАР) принадлежат к обширному классу тетрапиррольных макрогетероциклических систем, нашедших широкое практическое применение в различных областях науки и техники.

колец TAP Гидрирование пиррольных приводит к значительному батохромному смещению длинноволновой полосы поглощения в их электронных спектрах. Благодаря интенсивному поглощению и люминесценции в красной и ближней ИК области спектра, эти соединения перспективны как новый класс функциональных красителей, которые представляют в настоящее время широкий интерес в плане создания материалов и элементов современной техники и фотосенсибилизаторов (ФС) для фотодинамической терапии (ФДТ) рака. Однако гидрированные производные ТАР из-за отсутствия до последнего десятилетия методов их синтеза являются малоизученными соединениями. Поэтому актуальной остаётся задача синтеза новых соединений этого класса и изучения влияния структурных факторов на их физико-химические свойства, что позволит осуществить целенаправленный синтез практически важных для медицины и новой техники соединений.

Более изученными являются аналоги этих соединений в ряду порфиринов хлорины и бактериохлорины (ВС). Эти макроциклы, также имеющие интенсивное поглощение в красной и ближней ИК области спектра, в последние годы широко исследуются как ФС второго поколения для ФДТ. Использование ВС, имеющих интенсивное поглощение в так называемом «терапевтическом окне» - в интервале 720-800 нм, позволяет увеличить эффективность ФДТ за счёт более глубокого проникновения излучения в опухоль. Однако многие из них имеют ограниченное применение из-за низкой химической и фотостабильности, а также высокой гидрофобности, что требует поиска транспортных систем, эффективно доставляющих ФС к мембране клетки. В связи с этим поиск методов синтеза устойчивых гидрофильных производных ВС является весьма актуальной задачей.

Работа выполнена в рамках программ Департамента науки и промышленной политики г. Москва: «Дальнейшее внедрение в клиническую практику методов флуоресцентной диагностики и фотодинамической терапии онкологических заболеваний, в т.ч. в сочетании с другими методами противоопухолевой терапии и с использованием фотосенсибилизаторов нового поколения» (2007-2009 гг.) и «Дальнейшее внедрение в клиническую практику методов флуоресцентной диагностики и фотодинамической терапии онкологических заболеваний, в т.ч. с использованием фотосенсибилизаторов нового поколения методов флуоресцентной диагностики и фотодинамической терапии онкологических заболеваний, в т.ч. с использованием фотосенсибилизаторов нового поколения на основе ковалентных конъюгатов и наноносителей» (2010 – 2012 гг.) и грантов Российского Фонда Фундаментальных Исследований № 04-03-32533 и № 08-03-90007-Бел а.

<u>Цель работы</u>. Разработка методов синтеза гидрированных производных тетраазапорфинов и *мезо*-тетра(3-пиридил)порфина, их металлических комплексов и водорастворимых производных, а также изучение влияния структурных факторов на их свойства, прежде всего спектральные.

Научная новизна и практическая значимость работы.

Впервые исследована темплатная конденсация смеси тетраметилсукцинонитрила (TMCH) незамещённым, 4-трет-бутилс И 3-фенилсульфанилфталонитрилом дифенилмалеонитрилом присутствии И В хлористого индия. Разработан новый способ получения безметальных тетраазахлоринов (ТАС) с улучшенным выходом деметаллированием лабильных индиевых комплексов ТАС соляной кислотой, который дает возможность синтеза широкого круга недоступных ранее замещенных ТАС и металлических комплексов на их основе.

Впервые исследована смешанная конденсация 5,5-диметил-1,3-оксазолидин-2,4-диона с производными фталевой и нафталин-1,2- и -2,3-дикарбоновой кислот. Синтезированы не известные ранее гетероаналоги ТАС - бензо-, 1,2-нафто- и 2,3-нафтоконденсированные β -окса-ТАС никеля, содержащие атом кислорода в β -положении пиррольного фрагмента макроцикла вместо четвертичного атома углерода.

Изучена реакция [4+2]-циклоприсоединения незамещённого ТАР с диенами ряда циклопентадиена. Показано, что в зависимости от активности диена и условий реакции образуются моно- или бис-аддукты - норборненоконденсированные ТАС, тетраазабактериохлорины (TABC) и тетраазаизобактериохлорины (TAiBC). Синтезированы цинковый и палладиевый комплексы норборненоконденсированного ТАС.

Изучена активность октазамещенных ТАР в реакции 1,3-циклоприсоединения с азометинилидом. Впервые синтезированы и охарактеризованы новые N-метилпирролидиноконденсированные октаметилсульфанил- и октафенил-ТАС и TAiBC. Показано, что строение продуктов реакции зависит от соотношения реагентов, продолжительности и температуры реакции.

Впервые исследована реакция 1,2-циклоприсоединения незамещённого ТАР с этиловым эфиром диазоуксусной кислоты.

Синтезированы *мезо*-тетра(3-пиридил)бактериохлорин и ряд его тетра- и октакатионных водорастворимых четвертичных солей. Впервые исследована возможность синтеза металлических комплексов *мезо*-тетра(3-пиридил)ВС и его четвертичных солей прямым металлированием солями металлов и переметаллированием лабильного кадмиевого комплекса. Показано, что для четвертичных солей комплексообразование с цинком протекает существенно легче, чем для самого *мезо*-тетра(3-пиридил)ВС. Показано также, что комплексообразование с цинком понижает фотостабильность четвертичных солей.

Исследовано влияние структурных факторов на электронные спектры поглощения синтезированных соединений.

Изучена фотоиндуцированная противоопухолевая активность водорастворимых тетра- и октакатионных солей *мезо*-тетра(3-пиридил)ВС. Показано, что все исследованные безметальные ВС обладают высокой фотоиндуцированной активностью, что, учитывая интенсивное поглощение в длинноволновой области спектра, позволяет отнести их к перспективным ФС для ФДТ.

<u>Личный вклад автора.</u> Автором получены основные экспериментальные результаты, проведён их анализ и обсуждение, а также сформулированы выводы.

Апробация работы. Основные результаты работы докладывались на Международных конференциях по химии порфиринов и фталоцианинов ICPP-4 (Рим, Италия, 2006) и ICPP-5 (Москва, Россия, 2008), Международных конференциях по физической и координационной химии порфиринов и их аналогов ICPC-10 (Иваново, Россия, 2009) и ICPC-11 (Одесса, Украина, 2011), 8 Школе-конференции молодых учёных стран СНГ по химии порфиринов и родственных соединений (Гагра, Абхазия, 2009), 6 Международном симпозиуме IUPAC по новым материалам и их синтезу (NMS-VI) и 20 Международном симпозиуме по чистой химии и функциональным полимерам (FCFP-XX) (Ухань, КНР, 2010).

<u>Публикации.</u> Основное содержание работы изложено в 7 статьях в ведущих рецензируемых научных журналах и изданиях, и 9 тезисах докладов на российских и международных научных конференциях. По материалам работы находятся на рассмотрении во ВНИИГПЭ три заявки на получение патентов РФ.

<u>Структура и объём работы</u>. Работа состоит из введения, литературного обзора, обсуждения результатов, экспериментальной части, выводов, списка цитируемой литературы и приложения.

В литературном обзоре рассмотрено современное состояние методов синтеза гидрированных производных синтетических порфиринов и ТАР, включающих восстановление, окислительное гидроксилирование, реакции циклоприсоединения порфиринов и ТАР, получение устойчивых хлоринов и ВС из дигидродипирринов, получение гидрированных производных ТАР смешанной конденсацией фталогенов с различным уровнем насыщения.

Работа изложена на 160 страницах машинописного текста и содержит 85 схем, 32 рисунка и 8 таблиц. Список литературы содержит 172 библиографических наименований.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Синтез гидрированных производных тетраазапорфина смешанной конденсацией фталогенов с различным уровнем насыщения Синтез безметальных тетраазахлоринов смешанной конденсацией тетраметилсукцинонитрила с замещенными фталонитрилами и дифенилмалеонитрилом

Одним из методов получения безметальных ТАС является смешанная конденсация фталогенов с различной степенью насыщения в присутствии диметиламиноэтилата лития в кипящем диметиламиноэтаноле (DMAE). Однако их выход составляет не более 4,0 %, в то время как конденсация в присутствии солей металлов (Ni, VO) в качестве темплатов приводит к образованию металлических комплексов ТАС с гораздо более высокими выходами.

Нами предложен эффективный метод получения безметального трибензо-ТАС (10) темплатной конденсацией смеси ТМСН (1) с фталонитрилом (2) в мольном соотношении 3 : 1 в присутствии хлорида индия и молибдата аммония (МОА) в хинолине при 230 – 235°С с последующим деметаллированием промежуточно образующегося лабильного индиевого комплекса соляной кислотой при комнатной температуре (схема 1). Образующийся также в этих условиях индиевый комплекс

фталоцианина не деметаллируется, что позволяет легко отделить от него ТАС 10 экстракцией технического продукта хлорбензолом с последующим хроматографированием на силикагеле хлороформом. Выход ТАС 10 достигает 40 % и, в значительной степени, зависит от мольного соотношения реагентов. При уменьшении мольного соотношения ТМСН : фталонитрил до 1 : 1 выход ТАС 10 понижается до 13,6 %, при увеличении до 5 : 1 выход ТАС 10 составил 28,2 %.

Разработанный метод может быть использован для синтеза безметальных трибензо-ТАС, содержащих заместители в различных положениях конденсированных бензольных колец макроцикла. Так, при использовании в этой реакции 4-*mpem*-бутил-(3) и 3-фенилсульфанилфталонитрила (4) были получены недоступные ранее при использовании литиевого метода три(4-*mpem*-бутилбензо)-ТАС (11, 17,6 %) и три(3фенилсульфанилбензо)-ТАС (12, 12,0 %), соответственно (схема 1). Помимо синтеза замещенных трибензо-ТАС этот метод может быть использован также для синтеза ТАС с заместителями в β -положениях пиррольных колец. При использовании в качестве ненасыщенного фталогена дифенилмалеонитрила (5) получен гексафенил-ТАС (13) с выходом 38,2 %, что на порядок выше выхода по литиевому методу.

1.2. Синтез бензо- и нафтоконденсированных *β*-окса-тетраазахлоринов

Одним из направлений химической модификации молекулы TAC является введение в β-положения пиррольных фрагментов макроцикла гетероатомов вместо четвертичных атомов углерода.

С целью получения стабильных ТАС, содержащих атом кислорода в β -положении пиррольного фрагмента макроцикла нами была исследована смешанная конденсация 5,5-диметил-1,3-оксазолидин-2,4-диона (15) с производными фталевой, нафталин-1,2- и -2,3-дикарбоновой кислоты (ангидриды, имиды и нитрилы) (схема 2).

Схема 2

При взаимодействии фталонитрила 2 с соединением 15 в мольном соотношении 1 : 1 в присутствии мочевины, хлорида никеля и МОА в хинолине при 250°С в течение 30 мин в инертной атмосфере образуется 2,2-диметил-3-окса-

трибензотетраазахлорин никеля (19) с выходом 4,2 % в смеси с фталоцианином никеля (PcNi). Благодаря особенностям молекулярного строения, в частности наличию четвертичного атома углерода с метильными группами вне плоскости молекулы, окса-TACNi 19 обладает большей растворимостью в органических растворителях по сравнению с фталоцианином и отделяется от него экстракцией горячим толуолом. При сплавлении фталимида (16) с 15 в мольном соотношении 1 : 1 в присутствии избытка мочевины, хлорида никеля и MOA окса-TACNi 19 получен с выходом 5,6 %.

Этот метод был использован также для синтеза линейно и ангулярно нафтоконденсированных β -окса-ТАС. Так, при использовании в качестве ненасыщенного фталогена 1,2-дицианонафталина (17) в конденсации с 15 в мольном соотношении 1 : 2 был получен 2,2-диметил-3-окса-три(1,2-нафто)тетраазахлорин никеля (20) с выходом 8,0 % в смеси с 1,2-нафталоцианином никеля (1,2-NcNi). Линейно аннелированный три(2,3-нафто)конденсированный окса-ТАС никеля (21) получен смешанной конденсацией ангидрида нафталин-2,3-дикарбоновой кислоты (18) с 15 в присутствии мочевины, хлористого никеля и МОА в кипящем сульфолане с выходом 4,0 % (в смеси с 2,3-нафталоцианином никеля (2,3-NcNi)) (схема 2).

2. Синтез гидрированных производных тетраазапорфина реакциями циклоприсоединения

2.1. [4+2]-Циклоприсоединение с диенами ряда циклопентадиена

Другим удобным методом синтеза гидрированных производных ТАР являются реакции циклоприсоединения по квазиизолированным двойным C_β=C_{β'} связям макроцикла.

Исследована реакция [4+2]-циклоприсоединения незамещённого ТАР (14) в качестве диенофила с диенами ряда циклопентадиена – самим циклопентадиеном (22), 1,2,3,4,5,5-гексахлор- (23) и 5,5-диметокси-1,2,3,4-тетрахлорциклопентадиеном (24). В зависимости от активности диена, мольного соотношения реагентов и температуры реакции образуются либо норборненоконденсированные моно-аддукты (ТАС 25 – 27), либо бис-аддукты с расположением заместителей в противоположных (TABC 28a,6, 29a,6) или соседних пиррольных фрагментах молекулы (TAiBC 30, 31) (схема 3).

При взаимодействии TAP 14 с диеном 22 в мольном соотношении 1 : 30 и 1 : 60 при 150°С наблюдалось образование только моно-аддукта - TAC 25 с выходами 45,3 % и 63,0 %, соответственно. Взаимодействие 14 с более активным диеном 23 в соотношении 1 : 10 и 1 : 30 при 130°С приводит к образованию TAC 26 с выходами 10,7 и 47,4 %, соответственно. При повышении температуры реакции до 220°С и 30кратном избытке диена 23 наблюдалось образование помимо TAC 265 (33,7 %) двух *цис-* и *транс-*изомерных (в зависимости от взаимного расположения заместителей относительно плоскости макроцикла) TABC 28a (3,7 %) и 286 (3,3 %) и небольшого количества TAiBC 30 (~0,5 %). Образование в случае TAiBC 30 лишь одного из двух теоретически возможных изомеров, по-видимому, *транс-*изомера, можно объяснить значительным пространственным напряжением в случае *цис-*изомера. Использование диена 24 в реакции с TAP 14 в аналогичных условиях приводит к уменьшению продолжительности реакции до 10 мин, при этом наблюдалось образование ТАС **27** (26,1 %), ТАВС **29а** (6,0 %), **29б** (7,6 %) и ТАіВС **31** (0,7 %).

Взаимодействием свободного основания TAC **25** с солями цинка и палладия были синтезированы цинковый (**32**) и палладиевый (**33**) комплексы норборн-5'ено[b]тетраазахлорина. Цинковый комплекс **32** (14,3 %) получен при взаимодействии TAC **25** с ацетатом цинка в пиридине при комнатной температуре. Палладиевый комплекс **33** (7,8 %) получен при взаимодействии дианиона TAC, образующегося при добавлении спиртовой щелочи к раствору свободного основания TAC **25** в пиридине, с PdCl₂(C₆H₅CN)₂ при температуре 50 - 60°C.

2.2. 1,3-Циклоприсоединение с азометинилидом

Другим типом реакций циклоприсоединения, приводящим к гидрированным производным ТАР, содержащим конденсированные пятичленные гетероциклы, является реакция 1,3-циклоприсоединения тетраазапорфинов в качестве диполярофилов с 1,3-диполями. Для получения более устойчивых к окислению продуктов циклоприсоединения мы исследовали в качестве исходных диполярофилов замещенные по β -положениям пиррольных колец макроцикла октаметилсульфанил-(**34**) и октафенил-ТАР (**35**) в реакции с азометинилидом, генерируемым *in situ* из N-метилглицина и параформа.

Схема 4

1,3-циклоприсоединение Было обнаружено, что азометинилида К октазамещенным ТАР проходит в более жестких условиях по сравнению с незамещенным и тетрафенилзамещенным ТАР, что связано, по-видимому, С пространственным влиянием заместителей. Так, при взаимодействии ТАР 34 с N-метилглицином и параформом в мольном соотношении 1 : 4 : 10 в *о*-дихлорбензоле 170°C инертной атмосфере в течение 1.5 был при в Ч получен N-метилпирролидиноконденсированный октаметилсульфанил-ТАС (36, 20,3 %). При увеличении соотношения исходных соединений до 1:10:23 наряду с ТАС 36 бис(N-метилпирролидино)конденсированный (20,8 %) образуется также октаметилсульфанил-ТАіВС (38, 6,4 %) (схема 4). Октафенил-ТАР 35 показал еще меньшую активность в этой реакции, для него требуется более высокая температура реакции и увеличение молярного соотношения исходных реагентов. Так, при взаимодействии TAP **35** с N-метилглицином и параформом в соотношении 1 : 50 : 140 в кипящем трихлорбензоле в инертной атмосфере в течение 10 мин получены N-метилпирролидиноконденсированный октафенил-TAC (**37**, 12,6 %) и, в небольших количествах, бис(N-метилпирролидино)конденсированный октафенил-TAiBC (**39**, 1,5 %).

2.3. 1,2-Циклоприсоединение с этиловым эфиром диазоуксусной кислоты

Продолжая работу по изучению реакций циклоприсоединения TAP, мы исследовали реакцию 1,2-циклоприсоединения карбена, генерируемого *in situ* из этилового эфира диазоуксусной кислоты (ЭДА), к незамещённому TAP **14**. Эта реакция является малоизученной в ряду порфиринов, а для получения гидрированных производных TAP до нас не исследовалась.

При взаимодействии TAP 14 с избытком ЭДА в присутствии тетра(4-*трет*бутил)фталоцианина кобальта (t-Bu₄-4-PcCo) в *о*-дихлорбензоле при 80 - 85°C в инертной атмосфере нами был получен тетраазахлорин с конденсированным циклопропановым фрагментом (40) с выходом 3,9 % (схема 5).

Схема 5

Варьирование условий реакции (катализатор, температура, время) приводили лишь к незначительному изменению выхода ТАС **40**, при этом образования бисаддуктов не наблюдалось.

Строение гидрированных производных ТАР подтверждено данными ЭСП, ¹Н ЯМР- и ¹H-¹H COSY ЯМР-спектроскопии, масс-спектрометрии (MALDI-MS и ESI-MS) и элементного анализа.

3. Электронные спектры поглощения гидрированных производных ТАР

В электронных спектрах поглощения (ЭСП) ТАС 25 – 27, 36, 37, 40 и ТАВС 28а,6 и 29а,6, как и в спектре ТАР 14, в длинноволновой области наблюдается интенсивная полоса Q, расщеплённая на две компоненты разной интенсивности (табл. 1). При переходе от ТАР 14 к ТАС 25 – 27, 40 происходит батохромное смещение длинноволновой полосы Q₁ и гипсохромное смещение полосы Q₂ (рис. 1, табл. 1). Введение заместителей в β -положения пиррольных колец макроцикла ТАС приводит к значительному батохромному смещению полос поглощения по сравнению с незамещенными соединениями. Так, введение восьми метилсульфанильных (ТАС 36) и восьми фенильных групп (ТАС 37) приводит к батохромному смещению полосы Q₁ на 72 и 50 нм и полосы Q₂ на 54 и 41 нм, соответственно (табл. 1). При переходе от ТАР 14 к ТАВС 28а,6 и 29а,6, наблюдается большее, по сравнению с ТАС 25 - 27, батохромное смещение полосы Q₁ (на 138 – 148 нм) и гипсохромное

смещение полосы Q_2 (на 77–80 нм) (рис. 1, табл. 1). Соотношение интенсивностей полос Q_1 и Q_2 увеличивается при переходе от ТАР 14 к ТАС 25 – 27 и ТАВС 28а,6 и 29а,6. В спектрах ТАіВС 30, 31, 38, 39 в длинноволновой области наблюдается интенсивная полоса Q без видимого расщепления.

При образовании металлических комплексов ТАС симметрия молекулы, в отличие от металлических комплексов ТАР, не меняется и вид ЭСП остается без изменений. Однако в случае металлических комплексов батохромный сдвиг полосы Q_1 меньше, чем для свободного основания, и составляет 34 нм для цинкового комплекса **32** и 15 нм для палладиевого комплекса **33**. Гипсохромный сдвиг полосы Q_2 составляет 9 нм для цинкового комплекса **32** и 29 нм для палладиевого комплекса **33** (табл. 1).

Введение в молекулу незамещенного ТАС трех конденсированных бензольных колец приводит к значительному батохромному сдвигу длинноволновой полосы Q, связано с расширением *п*-электронной системы макроцикла. В что ЭСП трибензо-ТАС 10 в длинноволновой области наблюдается полоса Q, расщеплённая на две компоненты различной интенсивности 748 и 606 нм (табл. 1). Таким образом, при введении бензольных колец батохромный сдвиг полосы Q₁ составляет 70 нм и полосы Q₂ 89 нм по сравнению со спектром незамещённого ТАС. *трет*-Бутильные группы в положениях 4(5) бензольных колец трибензо-ТАС (ТАС 11) не оказывают существенного влияния на ЭСП, лишь приводят к некоторому батохромному смещению полос Q₁ и Q₂ (рис. 2, табл. 1) При введении фенилсульфанильных заместителей в положения 3(6) бензольных колец трибензо-ТАС (ТАС 12) наблюдается существенный батохромный сдвиг полос Q₁ и Q₂ на 37 и 26 нм, соответственно (рис. 2, табл. 1).

В длинноволновой области спектра бензоконденсированного окса-TACNi 19 наблюдается полоса Q, расщеплённая на две полосы различной интенсивности Q_1 и Q_2 при 756 и 599 нм, соответственно (рис. 4). Таким образом, введение в β -положение пиррольного фрагмента трибензо-TAC атома кислорода приводит к батохромному сдвигу полосы Q_1 на 32 нм при незначительном батохромном сдвиге полосы Q_2 .

 Рис. 1. ЭСП ТАР 14 (1, хлорбензол), ТАС
 Рис. 2. ЭСП ТАС 13 (1), ТАС 11 (2) и

 26 (2), ТАВС 28а (3) и ТАіВС 30 (4) в
 ТАС 12 (3) в СНСl₃.

 СН₂Cl₂.
 СН

При дальнейшем аннелировании бензольных колец в молекуле трибензо-окса-ТАС в результате расширения π -электронной системы макроцикла происходит батохромный сдвиг длинноволновой полосы Q. Больший сдвиг наблюдается у линейно аннелированного окса-TACNi **21** (рис. 6) по сравнению с ангулярно аннелированным изомером **20** (рис. 5), полоса Q которого расположена в промежуточной области между бензо- и 2,3-нафтоконденсированным аналогом (табл. 1).

В коротковолновой области спектра полученных гидрированных производных ТАР наблюдается менее интенсивная полоса В, положение которой не претерпевает значительных изменений при переходе от исходных ТАР к моно- и бис-аддуктам (табл. 1).

Рис. 4. ЭСП окса-ТАСNі **19** (*1*) и трибензо-ТАСNі (*2*) в трихлорбензоле.

Рис. 5. ЭСП окса-ТАСNi **20** (*1*) и три(1,2-нафто)-ТАСNi (*2*) в трихлорбензоле.

Рис. 6. ЭСП окса-ТАСNі **21** (*I*) и три(2,3-нафто)-ТАСNі (*2*) в трихлорбензоле.

Таблица 1.

<u> </u>	De	$λ_{\text{макс.}}$ HM (lgε),				
Соединение	Растворитель	/относительная интенсивность/				
		Q_1	Q_2	В		
1	2	3	4	5		
TAC 10	хлорбензол	748 (5,10)	606 (4,60)	341 (4,83)		
	хлороформ	748 /1,00/	606 /0,35/	339 /0,65/		
TAC 11	гексан	750 (5,28)	602 (4,68)	339 (4,90)		
	хлороформ	755 /1,00/	608 /0,35/	342 /0,66/		
TAC 12	хлорбензол	785 (5,06)	632 (4,56)	333 (4,70)		
IAC 12	хлороформ	784 /1,00/	630 /0,36/	329 /0,56/		
TAC 13	- // -	727 (4,93)	557 (4,43)	370 (4,66), 334 (4,67)		
окса-TACNi 19	трихлорбензол	756 (4,97)	599 (4,74)	321 (4,34)		
окса-TACNi 20	- // -	771 (4,82)	602 (4,76)	307 (4,86)		
окса-ТАСNi 21	- // -	843 /1,00/	682 /0,34/	308 /0,83/		
TAC 25	хлорбензол	678 (4,90)	520 (4,55)	333 (4,61)		
TAC 26	хлористый	668 (4 84)	516 (4 50)	345 (4 69)		
	метилен	000 (1,01)	010(1,00)	5.10 (1,05)		
TAC 27	- // -	670 (4,83)	517 (4,54)	343 (4,67)		
TAC 36	- // -	745 (4,51)	571 (4,45)	362 (4,33), 335 (4,38)		
TAC 37	- // -	723 (4,98)	558 (4,46)	372 (4,67),340 (4,66)		
TAC 40	хлорбензол	673 (4,81)	524 (4,51)	346 (4,60), 333 (4,58)		
TACZn 32	пиридин : толуол (1 · 5)	651 (4,80)	536 (4,70)	328 (4,61)		

~							
Элект	nouulie	CHEVTNI	т поглошения	гиппи	nopauuliv	πηριαροπητικ	ΤΔΡ
JUCKI	роппыс	CHERTPE	и поглощения	тидри	рованных	производпыл	

1	2	3	4	5
TACPd 33	пиридин	632 (4,81)	516 (4,70)	317 (4,50)
TABC 28a	хлористый метилен	756 (4,86)	467 (4,45)	355 (4,60)
TABC 286	- // -	755 (4,84)	468 (4,37)	356 (4,63)
TABC 29a	- // -	762 (4,82)	466 (4,37)	355 (4,56)
TABC 296	- // -	765 (4,85)	465 (4,38)	355 (4,57)
TAiBC 30	- // -	614 /1,00/	-	366 /0,47/
TAiBC 31	- // -	618 /1,00/	-	322 /1,30/
TAiBC 38	- // -	639 /1,00/	-	335 /0,63/
TAiBC 39	- // -	638 /1,00/	-	375 /0,83/

4. Синтез и свойства гидрированных производных *мезо*-тетра(3пиридил)порфина 4.1. Синтез *мезо*-тетра(3-пиридил)бактериохлорина, его четвертичных солей и металлических комплексов

В качестве исходных соединений водорастворимых ДЛЯ синтеза бактериохлоринов нами были выбраны мезо-тетра(3-пиридил)- (41) и мезо-тетра(4пиридил)порфин (42), способные образовывать водорастворимые формы при кватернизации пиридиновых атомов азота. Восстановлением порфиринов 41 и 42 образующимся *in situ* из *n*-толуолсульфонилгидразида (ТСГ) в диимидом, присутствии сухого поташа, в пиридине получены мезо-тетра(3-пиридил)- (43) и *мезо*-тетра(4-пиридил)ВС (45). Выход целевых продуктов в значительной степени зависит от соотношения исходных реагентов и времени проведения реакции. ВС 43 был получен с выходом 40,0 % при нагревании смеси порфина 41, ТСГ и поташа в мольном соотношении 1:2:10 в сухом пиридине при 110°C в течение 12 ч и добавлении новых порций ТСГ через каждые 1,5 ч. Выход ВС 45 при восстановлении порфина 42 в аналогичных условиях составил всего 5,0 %, что можно объяснить плохой растворимостью исходного порфина в пиридине.

Схема 6

Алкилированием ВС **42** избытком иодистого метила, метил-*п*толуолсульфоната, 1,4-дибромбутана или этилового эфира монохлоруксусной кислоты в кипящем нитрометане в инертной атмосфере были получены соответствующие тетракатионные водорастворимые четвертичные соли – *мезо*тетра(1-метил-3-пиридил)ВС тетраиодид (**46**, 63,0 %) и тетратозилат (**47**, 72,1 %), *мезо*-тетра[1-(4'-бромбутил)-3-пиридил]ВС тетрабромид (**48**, 66,2 %) и *мезо*-тетра(1-карбэтоксиметил-3-пиридил)ВС тетрахлорид (**49**, 61,8 %) (схема 6).

Наличие атомов брома в алкильной цепи ВС **48** позволило провести дальнейшую кватернизацию с увеличением количества катионных центров до восьми. При кипячении ВС **48** с избытком сухого пиридина или DMAE в метаноле в инертной атмосфере в течение 4,5 ч впервые в ряду ВС получены октакатионные четвертичные соли *мезо*-тетра[1-(4'-пиридиниобутил)-3-пиридил]ВС октабромид (**51**, 85,3 %) и *мезо*-тетра[1-(4'-диметилэтаноламмониобутил)-3-пиридил]ВС октабромид (**52**, 80,9 %), соответственно (схема 7).

Поскольку ЭСП тетра- и октакатионных солей практически идентичны, доказательство образования октакатионных солей было сделано на основании их ¹Н ЯМР спектров. Так, например, в спектре ВС **51** наблюдаются дополнительные сигналы протонов «наружных» пиридиниевых колец (рис. 7, 8).

Рис. 8. ¹Н ЯМР спектр ВС **51** в CD₃OD.

Была исследована возможность синтеза металлических комплексов BC **43** взаимодействием его с ацетатами или ацетилацетонатами металлов (Cd, Zn, Mg, Al, Pd) в различных растворителях в присутствии оснований или без них. Прямым металлированием BC **43** удалось получить лишь его кадмиевый комплекс **(53)** (схема 8). Цинковый комплекс **(54)** синтезирован переметаллированием BCCd **53** при кипячении с ацетилацетонатом цинка в смеси хлороформ – метанол.

В отличие от ВС 43, его четвертичные соли 46 – 48 и 51 образуют цинковые комплексы (55 – 58) с количественными выходами при прямом металлировании с ацетилацетонатом цинка. Цинковые комплексы 55 и 56 получены также кватернизацией BCZn 54 при кипячении его с избытком иодистого метила или метил*n*-толуолсульфоната.

Строение производных ВС подтверждено данными ЭСП, ¹Н ЯМР- и ¹Н-¹Н СОЅҮ ЯМР-спектроскопии, масс-спектрометрии (MALDI-MS) и элементного анализа.

4.2. Электронные спектры поглощения производных *мезо*-тетра(3-пиридил)бактериохлорина

В спектре ВС **43** в длинноволновой области наблюдается интенсивная полоса Q, расщепленная на две компоненты Q_1 и Q_2 разной интенсивности, расположенные при 747 и 521 нм. Полоса Соре также расщеплена на две компоненты при 357 и 380 нм. При переходе к металлическим комплексам характер спектра не изменяется, наблюдается лишь батохромный сдвиг обеих полос, причем величина сдвига полосы Q_2 зависит от природы металла в большей степени (рис 9, табл. 2).

В ЭСП тетра- и октакатионных солей 46 - 49, 51, 52 в длинноволновой области наблюдаются узкие интенсивные полосы поглощения Q_1 и Q_2 в метаноле и воде, что свидетельствует об отсутствии агрегации в водных растворах (рис. 10, табл. 2). В спектрах тетракатионных солей 46 - 49 в метаноле для полосы Q_1 наблюдается небольшой (13 нм) батохромный сдвиг, положение полосы Q_2 практически не изменяется. В спектрах октакатионных солей 51, 52 батохромный сдвиг полосы Q_1 составляет 14 нм, положение полосы Q_2 также практически не изменяется (табл. 2).

Рис. 9. ЭСП ВС 43 (СНСl₃, *1*), ВССd 53 Рис. 10. ЭСП ВС 43 (СНСl₃, *1*), ВС 48 (2) (толуол – СН₃ОН (5 : 1), 2) и ВСZn 54 и ВС 51 (3) в СН₃ОН. (СНСl₃) (3).

Таблица 2.

Электронные спектры поглощения производных мезо-тетра	3-
---	----

пиридил)бактериохлорина							
Deerperungu	λ _{макс} . нм, (lg	де), /соотнош	ение интенсивностей/				
Растворитель	Q ₁	Q ₂	В				
хлороформ	747 (5,05)	521 (4,71)	380 (5,08), 357 (5,00)				
метанол	760 (4,99)	514 (4,65)	373 (4,86), 349 (4,88)				
вода	761 (4,94)	517 (4,58)	374 (4,85), 350 (4,86)				
метанол	759 (4,96)	514 (4,63)	374 (4,85), 350 (4,87)				
вода	761 (4,96)	517 (4,60)	373 (4,88), 349 (4,89)				
метанол	761 (5,04)	516 (4,71)	374 (4,93), 349 (4,95)				
вода	763 (5,02)	518 (4,72)	374 (4,95), 351 (4,98)				
- // -	764 (4,88)	518 (4,52)	373 (4,82), 348 (4,85)				
метанол	761 (5,04)	516 (4,70)	374 (4,93), 349 (4,95)				
вода	763 (5,02)	518 (4,71)	374 (4,95), 351 (4,97)				
метанол	763 (4,93)	516 (4,64)	373 (4,87), 350 (4,89)				
вода	763 (4,90)	518 (4,55)	374 (4,83), 351 (4,85)				
толуол-метанол (5:1)	753 (4,85)	571 (4,36)	393 (4,70), 364 (4,68)				
хлороформ	765 /1,00/	561 /0,34/	389 /0,66/, 361 /0,74/				
вода	773 (4,87)	554 (4,29)	381 (4,60), 348 (4,67)				
- // -	774 (4,95)	554 (4,34)	383 (4,62), 348(4,71)				
- // -	774 (4,95)	554 (4,34)	383 (4,62), 349 (4,71)				
метанол	779 (5,01)	557 (4,48)	383 (4,66), 349 (4,83)				
вода	775 (4,99)	556 (4,39)	383 (4,66), 349 (4,78)				
	Пиридил Растворитель Хлороформ Метанол Вода Метанол Вода Метанол Вода Метанол Вода Метанол Вода - // - Метанол Вода - // - Вода Толуол-метанол (5:1) Хлороформ Вода - // - - // - - // - - // - - // - - // - Вода	Пиридил юактериохлиРастворитель $\lambda_{макс.}$ нм, (ІвQ1Q1хлороформ747 (5,05)метанол760 (4,99)вода761 (4,94)метанол759 (4,96)вода761 (4,96)метанол761 (5,04)вода763 (5,02)- // -764 (4,88)метанол763 (5,02)метанол763 (5,02)метанол763 (4,93)вода763 (4,93)вода763 (4,90)толуол-метанол (5:1)753 (4,85)хлороформ765 /1,00/вода773 (4,87)- // -774 (4,95)- // -774 (4,95)метанол779 (5,01)вода775 (4,99)	ПиридилюактериохлоринаРастворитель $\lambda_{\text{макс. HM, (lgs), /соотнош}}$ Q1Q2хлороформ747 (5,05)521 (4,71)метанол760 (4,99)514 (4,65)вода761 (4,94)517 (4,58)метанол759 (4,96)514 (4,63)вода761 (4,96)517 (4,60)метанол761 (5,04)516 (4,71)вода763 (5,02)518 (4,72)- // -764 (4,88)518 (4,52)метанол761 (5,04)516 (4,70)вода763 (5,02)518 (4,71)вода763 (5,02)518 (4,71)вода763 (4,93)516 (4,64)вода763 (4,90)518 (4,55)толуол-метанол (5:1)753 (4,85)571 (4,36)хлороформ765 /1,00/561 /0,34/вода773 (4,87)554 (4,29)- // -774 (4,95)554 (4,34)- // -774 (4,95)554 (4,34)метанол779 (5,01)557 (4,48)вода775 (4,99)556 (4,39)				

4.3. Испытания фотодинамической активности производных *мезо*-тетра(3-пиридил)бактериохлорина

В ходе работы нами установлено, что тетра- (46 - 49) и октакатионные (51, 52)четвертичные соли стабильны в водных растворах, характер ЭСП их водных растворов и величина оптической плотности в максимуме поглощения оставались неизменными в течение, по крайней мере, 24 часов. При хранении этих же растворов в темноте при комнатной температуре в течение трёх месяцев характер спектров также не изменялся, окисления в соответствующие хлорины и выпадения осадка из растворов не наблюдалось. Цинковые комплексы 55 - 58 менее стабильны в водных растворах по сравнению с безметальными соединениями. Характер ЭСП их водных растворов не изменяется со временем, однако величина оптической плотности в максимуме поглощения значительно снижается уже через 24 ч.

Для ВС 43, 46 – 48, 51 были определены квантовые выходы генерации синглетного кислорода¹ (Φ_{Δ}) (табл. 3).

¹ Автор благодарит с.н.с лаборатории 3-1 ФГУП «ГНЦ «НИОПИК» к.х.н. Людмилу Константиновну Сливку за помощь в определении Ф_Δ

Соединение	BC 43	BC 46	BC 47	BC 48	BC 51		
Φ_Δ	0,50	0,48	0,39	0,44	0,65		

Таблица 3. Квантовые выхолы генерации синглетного кислорода ВС 43 46 – 48 51

Для оценки фотодинамических характеристик синтезированные нами водорастворимые соли *мезо*-тетра(3-пиридил)бактериохлорина и их цинковые комплексы были протестированы *in vitro* и *in vivo* в ФГУ «МНИОИ им. П.А. Герцена» ² (Москва). Исследования *in vitro* проводили на культурах опухолевых клеток человека - эпидермоидной карциноме гортаноглотки (НЕр-2). Определяли концентрацию исследуемых соединений (ИК₅₀), при которой наблюдалось 50 % ингибирование роста клеток опухоли (табл. 4).

При проведении экспериментов было показано, что ВС 46 – 49, 51, 52 обладают фотоиндуцированной активностью в отношении клеток культуры НЕр-2. Цинковые комплексы 57 и 58 не проявляли фототоксичности к клеткам НЕр-2. Темновая токсичность у всех исследованных соединений отсутствовала.

Таблица 4.

n	TIL	DO 4		0	- 1	E 3
зизиения		RI 2	h - 4	. y		¬ /
JIIa ICIIII/I	111/20	DUT	U - 1		JI.	J 🖬

Соединение	BC 46	BC 47	BC 48	BC 49	BC 51	BC 52	
ИК ₅₀ , мкг/мл	$1,50\pm0,10$	$0,79\pm0,08$	0,40±0,05	9,55±0,75	$0,67\pm0,08$	0,90±0,10	

Проведено изучение фотоиндуцированной активности ВС 46 - 48 *in vivo* на мышах с привитой карциномой легкого Льюис (LLC). Была выявлена высокая дозозависимая противоопухолевая эффективность этих соединений. В зависимости от фотосенсибилизатора и вводимой дозы торможение роста опухоли (TPO) составило 88,90 – 100,00%, увеличение продолжительности жизни (УПЖ) 105,70 – 122,20 %, коэффициент излеченности (КИ) животных достигал 50,00 - 100,00 %. Наилучший результат наблюдался при использовании в качестве фотосенсибилизатора ВС 48. При введении мышам ВС 48 в дозе 5,00 мг/кг и облучении через 30 мин после введения наблюдалось стабильное торможение роста опухоли, при этом КИ составил 100,00 % (табл. 5).

Таблица 5.

Фотоиндуцированная противоопухолевая активность BC **46-48** у животных с опухолью LLC

Соединение	Доза, мг/кг	Интервал	Доза света, Дж/см ²	ТРО 11 сутки, %	ТРО 18 сутки, %	УПЖ, %	КИ, %
BC 46			00	88,9	85,8	105,7	50,0
BC 47	5,0	30	90	93,6	85,8	122,2	66,7
BC 48			150	100,0	100,0	-	100,0

² Данные получены совместно с сотрудниками отделения модификаторов и протекторов противоопухолевой терапии ФГУ «МНИОИ им. П.А. Герцена» (Москва) проф., д.б.н. Раисой Ивановной Якубовской, с.н.с., к.б.н. Натальей Борисовной Морозовой и м.н.с. Анной Дмитриевной Плютинской

выводы

1. Разработаны методы синтеза ряда новых гидрированных производных тетраазапорфина и *мезо*-тетра(3-пиридил)порфина, обладающих интенсивным поглощением в видимой и ближней ИК области спектра, и исследовано влияние структуры синтезированных соединений - гидрирования пиррольных фрагментов, введения заместителей и атома кислорода в β -положения макроцикла, аннелирования бензольных колец и природы центрального атома металла - на их свойства, в частности электронные спектры поглощения.

2. Разработан новый способ получения безметальных тетраазахлоринов темплатной конденсацией смеси тетраметилсукцинонитрила с 1,2-динитрилами ненасыщенных алифатических или ароматических кислот в присутствии хлорида индия с последующим деметаллированием промежуточно образующихся индиевых комплексов, позволивший более чем на порядок (до 40 %) увеличить их выход по сравнению с известным методом.

3. Разработан метод синтеза гетероаналогов тетраазахлорина - бензо-, 1,2- и 2,3нафтоконденсированных β-окса-тетраазахлоринов никеля - смешанной конденсацией 5,5-диметил-1,3-оксазолидин-2,4-диона с производными фталевой и нафталин-1,2- и -2,3-дикарбоновой кислоты.

4. Исследованы реакции тетраазапорфинов - [4+2]-циклоприсоединения с диенами ряда циклопентадиена, 1,3-диполярного циклоприсоединения с азометинилидом и 1,2-циклоприсоединения с этиловым эфиром диазоуксусной кислоты, позволившие впервые синтезировать норборненоконденсированные тетраазахлорины, тетраазабактерио- и -изобактериохлорины, N-метилпирролидиноконденсированные тетраазахлорины и -изобактериохлорины и циклопропаноконденсированный тетраазахлорин.

5. Осуществлен синтез *мезо*-тетра(3-пиридил)бактериохлорина восстановлением соответствующего порфина диимидом. Получен ряд водорастворимых тетра- и октакатионных четвертичных солей, изучены их спектральные свойства и показана высокая стабильность в водных растворах.

6. Показано, что цинковые комплексы четвертичных солей мезотетра(3-пиридил)бактериохлорина образуются при прямом металлировании солями металлов, тогда как шинковый комплекс самого тетра(3-пиридил)бактериохлорина образуется лишь при переметаллировании его кадмиевого комплекса. Обнаружена более низкая стабильность цинковых комплексов по сравнению с безметальными соединениями.

7. Найден новый перспективный фотосенсибилизатор для ФДТ - *мезо*-тетра[1-(4'бромбутил)-3-пиридил]бактериохлорин тетрабромид, обладающий значительной фотобиологической активностью (торможение роста опухоли и коэффициент излечиваемости составляют до 100%) и проходящий в настоящее время предклинические испытания.

15

Основное содержание работы изложено в следующих публикациях:

1. Lukyanets E.A., Makarova E.A., Derkacheva V.M., <u>Dudkin S.V.</u>, Solovyova L.I. Some synthetic approaches to photosensitizers of porphyrazine series. // J. Porphyrins Phthalocyanines 2006. V. 10. N. 4-6. P. 336.

2. <u>Dudkin S.V.</u>, Makarova E.A., Lukyanets E.A. Use of Diels – Alder reaction for the preparation of new reduced norbornene-condensed tetraazaporphines. // J. Porphyrins Phthalocyanines 2006. V. 10. N. 4-6. P. 615.

3. <u>Дудкин С.В.</u>, Макарова Е.А., Лукьянец Е.А. Фталоцианины и родственные соединения, XLVI. Реакция [4+2]-циклоприсоединения тетраазапорфина с диенами ряда циклопентадиена. // ЖОХ 2008. Т.78. Вып. 7. С.1208-1213.

4. Makarova E.A., <u>Dudkin S.V.</u>, Fukuda T., Kobayashi N., Lukyanets E.A. – Design and synthesis of tetraazachlorins, tetraazabacteriochlorins and tetraazaisobacteriochlorins. // J. Porphyrins Phthalocyanines 2008. V. 12. N. 3-6. P. 299.

5. Бельков М.В., Грищук А.А., <u>Дудкин С.В.</u>, Макарова Е.А., Першукевич П.П., Соловьев К.Н. Спектрально-люминесцентные свойства норборнено-замещённого тетраазахлорина и его металлокомплексов. // Ж. Прикл. Спектр. 2010. Т. 77. Вып. 2. С. 230-240.

6. <u>Dudkin S.V.</u>, Makarova E.A., Fukuda T., Kobayashi N., Lukyanets E.A. – Synthesis and spectroscopic properties of nickel complexes of benzo-, 1,2-naphtho-, or 2,3-naphthoannulated β -oxatetraazachlorins. // Tetrahedron Lett. 2011. V. 52. N. 23. P. 2994 – 2996.

7. <u>Дудкин С.В.</u>, Макарова Е.А. Лукьянец Е.А. Синтез и спектральные свойства металлических комплексов замещённого тетраазахлорина. // Тезисы докладов 10 Международной конференции по физической и координационной химии порфиринов и их аналогов (ICPC-10)/ Иваново, 2009. С. 109.

8. <u>Dudkin S.V.</u>, Makarova E.A., Lukyanets E.A. Synthesis of metal complexes of *meso*-tetra(3-pyridyl)bacteriochlorins. // Book of abstr. "6th IUPAC International Symposium on Novel Materials and their Synthesis (NMS-VI) and 20th International Symposium on Fine Chemistry and Functional Polymers (FCFP-XX). Wuhan, China, 2010. P. 261.

9. <u>Дудкин С.В.</u>, Макарова Е.А., Лукьянец Е.А. Синтез новых гидрированных производных тетраазапорфинов и их β-оксазамещённых аналогов. // Тезисы докладов 11 Международной конференции по физической и координационной химии порфиринов и их аналогов (ICPC-11). Одесса, Украина 2011. С. 51.

10. Makarova E.A., <u>Dudkin S.V.</u>, Shchukina A.P., Lukyanets E.A. – Synthesis of new water-soluble *meso*-tetraaryl bacteriochlorin derivatives as potential antitumor photosensitizers. // Book of abstr. 17th European Symposium on Organic Chemistry (ESOC-2011), Crete, Greece, 2011. P.1. 161.

11. Yakubovskaya R.I., Morozova N.B., Plutinskaya A.D., Chissov V.I., Lukyanets E.A., Vorozhtsov G.N., Makarova E.A., <u>Dudkin S.V.</u>, Shchukina A.P. - The photo-induced antitumor efficiency of *meso*-tetraaryl bacteriochlorin derivatives. // Book of abstr. 14th Congress European Society for Photobiology. Geneva, Switzerland, 2011. P. 122.