На правах рукописи

МАМАДЖАНОВА ЕВГЕНИЯ ХУСЕЙНОВНА

СПЕКТРАЛЬНО-КИНЕТИЧЕСКИЕ СВОЙСТВА АКТИВИРОВАННЫХ РЕДКОЗЕМЕЛЬНЫМИ ЭЛЕМЕНТАМИ СТЕКОЛ СИСТЕМЫ Y₂O₃-Al₂O₃-B₂O₃ И ПОЛИКРИСТАЛЛОВ СО СТРУКТУРОЙ ХАНТИТА

Специальность 05.17.11 – Технология силикатных и тугоплавких неметаллических материалов

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук

Москва – 2012

Работа выполнена в Российском химико-технологическом университете имени Д.И. Менделеева на кафедре «Химическая технология стекла и ситаллов»

Научный руководитель:

доктор химических наук, профессор Сигаев Владимир Николаевич, РХТУ им. Д.И. Менделеева, профессор кафедры «Химическая технология стекла и ситаллов»

Официальные оппоненты: Доктор химических наук, профессор Минаев Виктор Семенович, ЗАО «НИИ материаловедения», г. Зеленоград

Кандидат технических наук, доцент Молев Владимир Иванович, Московский государственный университет приборостроения и информатики (МГУПИ), директор филиала в г. Лыткарино

Ведущая организация – Научно-исследовательский физико-химический институт им. Л.Я. Карпова

Защита состоится 14 мая 2012 года в 17 часов на заседании диссертационного совета Д 212.204.12 в РХТУ им. Д.И. Менделеева (125047, г. Москва, Миусская пл., д. 9) в конференц-зале.

С диссертацией можно ознакомиться в Информационно-библиотечном центре РХТУ им. Д.И. Менделеева.

Автореферат диссертации разослан _____ апреля 2012 г.

Ученый секретарь диссертационного совета Д 212.204.12, д.т.н.

Н.А. Макаров

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

<u>Актуальность темы.</u> Стекла и кристаллы, активированные ионами редкоземельных элементов (РЗЭ), широко используются в лазерной технике, интегральной и волоконной оптике, для производства люминофоров. Применению их часто препятствует тенденция ионов РЗЭ к кластеризации, т.е. уменьшению расстояния между активными ионами, что приводит к усилению концентрационного тушения, ухудшению эффективности люминесценции и, как следствие, накладывает ограничения на содержание РЗЭ в матрице.

Кристаллы $REAl_3(BO_3)_4$ (RE = Y, Nd, Sm, Eu, Tb и др.) со структурой хантита характеризуются низкой эффективностью кросс-релаксационных и кооперативных процессов тушения люминесценции, обусловленных большим расстоянием между соседними ионами РЗЭ (≈ 0,6 нм). Разработке на их основе лазерных материалов и люминофоров посвящено значительное количество работ. Однако поиск как новых люминофоров, имеющих высокую яркость, квантовый выход и светоотдачу, так и лазерных систем с требуемыми энергетическими, спектральными и пространственными характеристиками попрежнему не теряет своей актуальности. Перспективными материалами для ЭТОГО являются хантитоподобные порошковые кристаллические И стеклообразные среды, активированные ионами РЗЭ, в частности, Sm³⁺ и Eu³⁺, которые проявляют интенсивную люминесценцию в оранжево-красной области спектра. Хотя люминесценции ионов Eu³⁺ в различных кристаллических и стеклообразных матрицах (в отличие от ионов Sm³⁺) посвящено большое число исследований, вынужденное излучение ионов Eu³⁺ в неорганических порошках и, в частности, в хантитах не наблюдалось.

Кристаллы REAl₃(BO₃)₄ характеризуются инконгруэнтным характером плавления и высокой склонностью расплава к стеклованию. Однако процессы синтеза и свойства хантитоподобных стекол ранее практически не изучались, несмотря на естественное предположение о сходстве их ближнего порядка со В своим кристаллическим «аналогом». связи c ЭТИМ актуальными представляются синтез и исследование спектрально-кинетических свойств стекол, близких по химическому составу к хантитоподобному кристаллу REAl₃(BO₃)₄. В этом отношении особый интерес представляют активированные Sm³⁺ стекла системы Y₂O₃-Al₂O₃-B₂O₃ (YAB). Вследствие сильного кроссрелаксационного тушения люминесценции ионов Sm³⁺ и небольшой величины сил осцилляторов «рабочих» переходов они долгое время не пользовались

вниманием разработчиков лазерных материалов. Однако появление мощных светодиодов, излучающих в фиолетовой области спектра, инициировало интерес к использованию ионов Sm³⁺, характеризующихся отсутствием наведенного поглощения из метастабильного состояния, в качестве активатора лазерных сред. Перечисленные особенности ионов Sm³⁺ делают их также удобной моделью для изучения механизмов взаимодействия и пространственного распределения активатора в стеклообразных матрицах, позволяя оценить перспективность последних для активирования разными РЗЭ.

<u>Цель работы.</u> Разработка хантитоподобных стекол в системе Y_2O_3 -Al₂O₃-B₂O₃, характеризующихся люминесценцией в оранжево-красной области спектра и высокими значениями квантового выхода. Установление взаимосвязи между его величиной и концентрацией Sm³⁺ в хантитоподобных стеклах и поликристаллах того же состава, а также определение макро- и микропараметров взаимодействия ионов активатора и расстояния между ними. Получение вынужденного излучения в хантитоподобных поликристаллах ЕuAl₃(BO₃)₄ и исследование кинетических характеристик их люминесценции.

<u>Научная новизна.</u> Впервые проведен сравнительный анализ спектральнокинетических свойств активированных Sm³⁺ стекол и кристаллических порошков состава хантитоподобного кристалла (Sm,Y)Al₃(BO₃)₄. Обнаружено, что изученные стекла характеризуются низкой тенденцией к сегрегации редкоземельных ионов и большим, чем в поликристаллах того же состава, квантовым выходом при содержании ионов самария $N_{\rm Sm} < 1,0.10^{20}$ см⁻³. Минимальное расстояние Sm³⁺ - Sm³⁺ в стеклах составляет 0,66-0,68 нм и практически не зависит от концентрации активатора до 2 мол. %.

предельный квантовый Рассчитаны люминесценции выход активированных Sm³⁺ хантитоподобных стекол, коэффициенты ветвления люминесценции для наиболее интенсивных переходов $\mathrm{Sm}^{3+} {}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$ $(\lambda \approx 600 \text{ нм})$ и ${}^{4}G_{5/2} \rightarrow {}^{6}H_{9/2}$ ($\lambda \approx 650 \text{ нм}$), значения поперечного сечения индуцированного излучения И микропараметры донорно-акцепторного взаимодействия. Показано, что для всех исследованных стекол характерна низкоэффективная миграция энергии по метастабильному уровню ${}^{4}G_{5/2}$ ионов Sm³⁺, а кросс-релаксационные взаимодействия последних осуществляются преимущественно по диполь-квадрупольному механизму.

Впервые получено вынужденное излучение основного типа центров Eu^{3+} в переходах ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$, ${}^{7}F_{2}$, ${}^{7}F_{4}$ при возбуждении электронным пучком

хантитоподобных поликристаллов EuAl₃(BO₃)₄. При лазерном возбуждении EuAl₃(BO₃)₄ в переходе ${}^7F_0 \rightarrow {}^5L_6$ ионов Eu³⁺ обнаружена перестройка структуры оптических центров, сопровождающаяся увеличением вероятности радиационных переходов активатора.

Практическая значимость. Показано, что допированные ионами Sm³⁺ иттрийалюмоборатные стекла, близкие по составу к хантитоподобному кристаллу (Sm,Y)Al₃(BO₃)₄, с концентрацией активатора менее 1 мол. % могут быть использованы в качестве активных сред лазеров. Полученные в работе спектрально-кинетические характеристики стекол позволяют рассчитать условия накачки лазеров на их основе.

Разработана методика варки в платиновых тиглях малого объема (менее 0,5 л) с использованием механического перемешивания и бурления расплава Sm^{3+} активированных системы кислородом стекол $Y_2O_3-Al_2O_3-B_2O_3$ оптического Получены Институт качества. И переданы физики В им. Б.И. Степанова НАНБ оптически однородные стекла состава 0,3Sm₂O₃-9,7Y₂O₃-30,0Al₂O₃-60,0B₂O₃ для испытаний и изготовления на их основе излучателей, генерирующих излучение в оранжево-красной области спектра.

Апробация работы. Представленные В диссертации результаты докладывались и обсуждались на следующих конференциях: First International Conference on Luminescence of Lanthanides ICLL-1 (2010, Одесса, Украина); 4th International conference on physics of laser crystals - International workshop 11.5 -Crystallography and spectral properties of nano and bulk materials- ICPLC-CSPNBM (2010, Судак, Украина); Международные конференции молодых ученых по химии и химической технологии (2010, 2011, Москва); XIX Международная научно-техническая конференция "Конструкции и технологии изделий из неметаллических материалов" (2010, Обнинск); получения I международный семинар «Тенденции развития оксидных материалов промежуточных состояний И свойства между стеклами структура И кристаллами» (2011, Москва); III конгресс физиков Беларуси – Симпозиум, посвященный 100-летию со дня рождения академика Ф.И. Федорова (2011, Минск, Беларусь); Х Всероссийская конференция «Материалы нано-, микро-, оптоэлектроники и волоконной оптики: физические свойства и применение» (2011, Саранск); IV Всероссийская конференция по химической технологии с международным участием (2012, Москва, ИОНХ им. Н.С. Курнакова и ИХФ им. Н.Н. Семенова РАН).

Работа поддержана Министерством образования и науки РФ (грант 11.G34.31.0027), Российским фондом фундаментальных исследований (гранты 10-03-00591 и 10-03-90012-Бел_а).

Публикации. По теме диссертации опубликовано 11 работ (из них 1 патент, 1 статья и 9 тезисов докладов на научных конференциях).

<u>Объем и структура диссертации.</u> Диссертация состоит из введения, трех глав, выводов и списка литературы (93 наименования). Работа изложена на 123 страницах печатного текста, включает 57 рисунков и 7 таблиц.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность диссертационной работы, указаны цели исследования, сформулирована научная новизна и практическая ценность работы.

<u>В первой главе</u> проанализирована проблема концентрационного тушения люминесценции в кристаллах и стеклах. Приведены данные о кристаллическом строении боратов со структурой хантита. Проведен сравнительный анализ спектрально-люминесцентных свойств активированных Sm^{3+} оксидных стекол. Детально рассмотрены стеклообразование и свойства стекол в алюмоборатных системах. Анализ литературных данных свидетельствует об актуальности проблемы концентрационного тушения люминесценции и перспективности исследований стекол и кристаллических порошков состава хантитоподобного кристалла (Sm,Y)Al₃(BO₃)₄ с целью создания новых люминесцентных материалов.

<u>Во второй главе</u> описаны способы и условия синтеза исследованных стекол и поликристаллов, а также применявшиеся методы изучения их физикохимических свойств.

Синтез образцов. В качестве исходных компонентов для варки стекол и твердофазного синтеза использовали Sm_2O_3 (осч), Y_2O_3 (осч), $Al(OH)_3$ (чда), H_3BO_3 (хч). Твердофазный синтез осуществляли в корундовых тиглях на воздухе в электрической печи при $T = 1150^{\circ}C$. На начальном этапе исследований стекла варили в платиновом тигле объемом 50 мл при температурах 1300-1550°C в течение 60 мин. в зависимости от состава. Пластины стекла толщиной 2-3 мм получали прессованием расплава между двумя стальными плитами. В результате анализа данных о кристаллизации и спектрально-кинетических свойств полученных стекол были определены

составы, варку которых осуществляли в платиновых тиглях объемом 300 мл с использованием перемешивания (30-100 об./мин) и бурления расплава «сухим» кислородом.

Методы исследования. Для характеристики фазового состава полученных образцов И продуктов кристаллизации стекол при последующих термообработках использовали рентгенофазовый анализ (РФА). Измерения проводили на дифрактометре ДРОН-3 (СиК_а, никелевый фильтр) при комнатной температуре. Для измерений использовали образцы в виде пластин либо порошки дисперсностью ~ 40-60 мкм. Все стекла в виде порошков исследовали методом дифференциально-термического анализа (ДТА) на дериватографе Q-1000, а также методом дифференциально-сканирующей калориметрии (ДСК) для монолитных и порошковых образцов с помощью высокотемпературного термоанализатора Netzsch STA 449F3 при скорости нагрева 10 град/мин В интервале 40-1480°C. Измерение двойного лучепреломления и определение категории оптической однородности стекла проводили по стандартной методике с использованием прибора ПКС-500. Показатель преломления измеряли на рефрактометре Аббе NAR-3T.

Спектры люминесценции (СЛ) и возбуждения люминесценции (СВЛ) регистрировались на спектрофлуориметре СДЛ-2 методом «на отражение», исправлялись с учетом спектральной чувствительности системы регистрации и распределения спектральной плотности возбуждающего излучения соответственно и выражались в виде зависимости числа квантов на единичный интервал длин волн $dN/d\lambda$ от длины волны λ . Для возбуждения люминесценции использовали ксеноновую лампу, перестраиваемый моноимпульсный титансапфировый лазер (длительность импульса по полуширине $\Delta t \approx 10$ нс, спектральная полуширина полосы излучения $\Delta \lambda \approx 1$ нм) и сильноточный ускоритель электронов РАДАН-2250 с энергией пучка 200 кэВ ($\Delta t \approx 2$ нс). Регистрация осуществлялась c кинетики люминесценции помощью фотоумножителя R4632 ("Hamamatsu") и цифрового осциллографа B423 (УП "Унитехпром БГУ"). Вывод светового потока из аналитической камеры ускорителя электронов осуществляли с помощью кварцевого оптоволокна. Кинетику затухания люминесценции исследовали при возбуждении второй гармоникой перестраиваемого моноимпульсного титан-сапфирового лазера $(\Delta t \approx 10 \text{ нс}, \lambda = 404 \text{ нм})$ и моноимпульсным лазером на растворе родамина 6G ($\Delta t \approx 10$ нс, $\lambda = 562$ нм). Все спектры регистрировали при комнатной

температуре. Измерение спектров люминесценции проводили под руководством д.ф.-м.н. Г.Е. Малашкевича в Институте физики им. Б.И. Степанова НАНБ.

Вероятности спонтанного испускания (A_{ij}) и сечение индуцированного излучения (σ_{ij}) в максимуме полос люминесценции (λ_{ij}) ионов РЗЭ вычисляли по формулам:

$$A_{ij} = \frac{g_j 8\pi cn^2}{g_i N \lambda_{ij}^4} \int k_{ji}(\lambda) d\lambda, \qquad (1) \quad \text{где } g - \text{ степень}$$
соответствующего

$$\begin{aligned} A_{ij'} &= A_{ij} \int (dN/d\lambda)_{j'} d\lambda / \int (dN/d\lambda)_{j} d\lambda ,\\ \sigma_{ij} &= \frac{\lambda_{ij}^4 A_{ij}}{8\pi c n^2 \overline{\Delta \lambda}_{ij}} , \end{aligned}$$

вырожления

объемная концентрация активатора, $\overline{\Delta\lambda}$ – эффективная ширина полосы люминесценции, определенная как отношение интегральной интенсивности к пиковой $\overline{\Delta\lambda} = \int I(\lambda) d\lambda / I_{max}$.

Квантовый выход люминесценции (η) определяли путем сравнения интегральной регистрируемой ($\bar{\tau}$) и радиационной (τ_0) длительности затухания по формуле: $\eta = \bar{\tau}/\tau_0$, (4), где $\bar{\tau} = I_{\text{max}}^{-1} \int I(t) dt$, I – интенсивность затухания люминесценции, $\tau_0 = 1/A_{ii}$.

<u>В третьей главе</u> изложены результаты исследований и их анализ. В качестве объектов исследований были выбраны стекла состава хантитоподобного кристалла (Sm,Y)Al₃(BO₃)₄ (серия 1), а также стекла с увеличенным содержанием оксида бора (серия 2):

1) $xSm_2O_3-(12,5-x)Y_2O_3-37,5Al_2O_3-50,0B_2O_3$, где x = 0.5 мол. % (хантитоподобные стекла)

2) 0,3Sm₂O₃-12,2Y₂O₃-37,5Al₂O₃-50,0B₂O₃ + B₂O₃ (10, 25, 45, 70 мол. % сверх 100%) при соотношении (Sm,Y)₂O₃/Al₂O₃=1/3.

Увеличение концентрации B_2O_3 существенно снижает температуру варки стекла. Например, для стекла состава №5 (табл. 1) она составляет 1480°С, что на 70°С меньше, чем для хантитоподобных стекол. Снижение температуры синтеза уменьшает количество растворяемой атомарной платины в стекле, облегчает процесс перемешивания и благоприятствует получению заготовок оптического качества. С повышением содержания B_2O_3 стеклообразующая способность расплава улучшается, а склонность стекла к кристаллизации при

нагреве снижается. При сохранении соотношения $(Sm,Y)_2O_3/Al_2O_3=1/3$ увеличение B_2O_3 выше 70 мол. % приводит к выделению $Al_4B_2O_9$ (JCPDS 79-1477) из расплава стекла при выработке.

Таблица 1

N⁰	Состав, мол. %				N_{Sm} ,	T °C	η,	$\overline{\tau}$,
	Sm ₂ O ₃	Y_2O_3	Al_2O_3	B_2O_3	ион/см ³	1 g, C	%	мкс
1	0,05	12,45	37,5	50	$0,18 \cdot 10^{20}$	730	76	2620
2	0,3	12,2	37,5	50	$1,0.10^{20}$	730	50	1620
3	1	11,5	37,5	50	$3,3 \cdot 10^{20}$	710	20	640
4	4	8,5	37,5	50	$14,2.10^{20}$	705	4	80
5	0,3	9,7	30	60	$1,0.10^{20}$	705	60	2040

Составы стекол, концентрация ионов Sm³⁺ N_{Sm} , температура стеклования T_{e} , квантовый выход η и время затухания люминесценции $\overline{\tau}$

Все полученные в работе стекла кристаллизуются с выделением в объеме преимущественно бората алюминия $Al_4B_2O_9$ (JCPDS №29-0010), а на поверхности боратов иттрия YBO₃, самария SmBO₃ (JCPDS №13-0479 и 16-0277, соответственно) и хантитоподобных фаз: YAl₃(BO₃)₄ и SmAl₃(BO₃)₄ (JCPDS №72-1978 и 18-0058, соответственно) или их твердых растворов, что подтверждается данными РФА (рис. 16-д). Объемный характер фазового разделения следует из сравнения кривых ДСК монолитных и порошковых образцов изученных стекол (рис. 2). Согласно данным РФА порошки, полученные твердофазным синтезом, содержали только хантитоподобные кристаллы YAl₃(BO₃)₄, SmAl₃(BO₃)₄ или их твердые растворы (рис. 1е). Вследствие малой разницы в параметрах кристаллической решетки различить твердый раствор и индивидуальные фазы при выбранных условиях рентгенографического эксперимента было затруднительно.

На рис. За представлен типичный спектр поглощения хантитоподобного стекла. Как видно, данные стекла характеризуются очень слабым поглощением в большей части видимой области спектра, относительно интенсивные полосы поглощения видны лишь вне интервала 500-1000 нм.

Рис. 1. Рентгенограммы порошков стекла Рис. состава №2: исходного (а), полученных из монолитных и (б, г) порошковых монолитных образцов, термообработанных в течение 3 ч при 860°С (б), 960°С (в) и (в, г) №5. 1060°C **(**Г) И ИЗ порошков, термообработанных при 860°C (д) в течение 3 ч; поликристаллов SmAl₃(BO₃)₄, полученных твердофазным синтезом (е).

2. Кривые ДСК (a. B) образцов стекол состава (а, б) №2 и

Никакие существенные отклонения от закона Бугера-Ламберта-Бера в (0,36-17,7)·10²⁰ см⁻³ для данных стекол не концентраций диапазоне обнаружены, что позволяет сделать вывод о сохранении структуры оптических центров при повышении содержания ионов самария N_{Sm}. Отсутствие заметных изменений в форме спектров люминесценции стекол и поликристаллов (рис. 4) при увеличении концентрации ионов Sm³⁺ подтверждает сделанный вывод. Аналогичных изменений не обнаружено и при увеличении содержания В₂О₃.

Анализ спектров поглощения и люминесценции (рис. 3а и 4) с помощью уравнений (1) и (2) и с учетом плотности стекол приводит к следующим вероятностей спонтанных переходов ионов Sm^{3+} : значениям $A({}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2}) = 23,0 \text{ c}^{-1}, A({}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}) = 109,0 \text{ c}^{-1}, A({}^{4}G_{5/2} \rightarrow {}^{6}H_{9/2}) = 80,0 \text{ c}^{-1},$ $A({}^{4}G_{5/2} \rightarrow {}^{6}H_{11/2}) = 22,5 \text{ c}^{-1}, A({}^{4}G_{5/2} \rightarrow {}^{6}H_{13/2,15/2}, {}^{6}F_{7/2,9/2}) = 60,5 \text{ c}^{-1} \text{ M } \sum_{i'} A_{ij'} = 295 \text{ c}^{-1}.$

Согласно уравнению (3) значение пиковых сечений для наиболее интенсивных люминесценции составляет $\sigma({}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}) = 4,4 \cdot 10^{-22}$ cm^2 полос И $\sigma({}^{4}G_{5/2} \rightarrow {}^{6}H_{9/2}) = 3.8 \cdot 10^{-22} \text{ cm}^{2}.$

Рис. 3. Спектр оптического Рис. 4. поглощения (а) и ИК-спектр (б) поликр стекла состава №4, полученный на №3. (а основе соотношений Крамерса- нм; (б) Кронинга.

Рис. 4. СЛ (*a*) и СВЛ (б) хантитоподобных поликристаллов (*1*) и стекол (2) состава №3. (a) $\lambda_{603\delta} = 404$ нм, $\Delta \lambda_{u3\pi} = 0.5 \Delta \lambda_{603\delta} = 1$ нм; (б) $\lambda_{u3\pi} = 645$ нм, $\Delta \lambda_{u3\pi} = \Delta \lambda_{603\delta} = 2$ нм.

Ha затухания люминесценции (рис. 5) отклонение кривых OT экспоненциального закона свидетельствует о кросс-релаксационном тушении ионов Sm³⁺ как в стеклах, так и в поликристаллах. Превышение расчетного радиационного времени жизни ионов Sm^{3+} $\tau_0 = 1/\sum A_{ij} = 3390$ мкс над экспериментальным ($\overline{\tau}$ = 2620 мкс) для стекла с 0,05 мол.% Sm₂O₃ (рис. 5, очевидно, связано с внутрицентровым разменом 1). энергии кривая возбуждения на колебания группировок трехкоординированного бора, которые эффективными тушителями люминесценции 3б). В являются (рис. поликристаллах же отклонение от экспоненциальности может быть объяснено наличием дефектов с уменьшенным расстоянием между ионами Sm³⁺ или влиянием неконтролируемой тушащей примеси, например [FeO₆]. Следует отметить, что электрон-фононное взаимодействие в кристаллах, где все группировки бора трехкоординированы, должно быть не менее эффективным, С увеличением чем В стеклах. содержания оксида самария неэкспоненциальность процесса затухания люминесценции быстро нарастает (рис. 5), а время жизни люминесценции значительно сокращается.

Значение квантового выхода в хантитоподобных поликристаллах ($\eta_{\kappa n}$) заметно ниже, чем в стеклах (η_{cm}) при $N_{\rm Sm} < 1,0.10^{20}$ см⁻³ (рис. 6), что, вероятно, вызвано теми же причинами, которые обусловливают неэкспоненциальный характер кинетики затухания для поликристаллов с минимальной концентрацией активатора. С увеличением концентрации ($N_{\rm Sm} > 2,0.10^{20}$ см⁻³), $\eta_{\kappa\nu} \approx \eta_{cm}$ (рис. 6), что, очевидно, связано с наличием в стекле ОН⁻-групп, отсутствующих в поликристаллах. Рассчитанное значение $N_{\rm OH} \approx 4.0 \cdot 10^{19}$ см⁻³ к многофононным процессам достаточно велико И может приводить релаксации, вероятность которых пропорциональна $N_{\rm Sm} \cdot N_{\rm OH}$.

Рис. 5. Кинетика затухания люминесценрис. 6. Зависимость квантового ции хантитоподобных стекол (1-4) и выхода люминесценции ионов поликристаллов (5-8) с $N_{\rm Sm}$, 10^{20} см⁻³: (1, 5) Sm³⁺ от концентрации Sm₂O₃ в 0,18; (2, 6) 1,0; (3, 7) 3,3; (4, 8) 6,8 и (9) хантитоподобных стеклах (1) и стекла №5, λ_{6036} , нм: (1, 5, 9) 404; (2-4, 6-8) поликристаллах (2). 562; $\lambda_{pez} = 598$ нм.

Для получения более детальной информации Sm-содержащих 0 хантитоподобных стеклах основе стандартного подхода была на проанализирована кинетика затухания люминесценции как функция макро- и микропараметров взаимодействия ионов активатора:

$$I(t) = I_0 \exp\{-t/\tau_0 - [W_1 t \times e^{-t/t^*} + \gamma^{3/s} \times (1 - e^{-t/t^*}) + W_2 t \times (1 - e^{-t/t^{**}})]\}, \quad (5),$$

где W_1 – вероятность тушения вследствие донорно-акцепторного взаимодействия на расстоянии R_{min} , γ – макропараметр Ферстеровского распада,

S - порядок мультипольности донорно-акцепторного взаимодействия, W_2 – вероятность миграции энергии по метастабильному уровню ионов активатора. W_1 описывается уравнением $W_1 = cC_{DA}aR_{min}^{-S}$ (6), где $c = N_{Sm}/(N_{Sm})_{max}$ – коэффициент заполнения примесной подсистемы, a – координационное число Sm³⁺, C_{DA} – микропараметр эффективности межионного взаимодействия. Макропараметр Ферстеровского распада определяется как: $\gamma = 4/3\pi\Gamma(1-3/S)nC_{DA}^{3/S}$ (7), где Γ – гамма-функция. Приближенное выражение для W_1 позволяет определить значение R_{min} по уравнению $R_{min}^{S-3} = 7C_{DA}N_{Sm}/W_1$ (8).

Установлено, что для хантитоподобных стекол механизм донорновзаимодействия диполь-квадрупольный акцепторного носит характер. Рассчитаны макропараметры тушения γ , которые для стекол с $N_{\rm Sm}$ (10²⁰ см⁻³) = 1,0, 1,7, 3,3 и 6,8 составляют 6,0, 9,9, 19,6 и 40,3 с^{-3/8} соответственно. Следует отметить, что концентрационная зависимость данного макропараметра носит линейный характер, что согласуется с описанной ранее независимостью Величина свойств ОТ $N_{\rm Sm}$. микропараметра спектральных $(C_{\mathrm{DA}}),$ характеризующего эффективность тушащих взаимодействий Sm³⁺→Sm³⁺, диапазоне $(4,3-4,6)\cdot 10^{-54}$ см⁸/с. Вычисленное расстояние находится в минимального сближения ионов R_{min} составляет 0,66-0,68 нм при изменении концентраций Sm^{3+} от 1,0 до 6,8 $\cdot 10^{20}$ см $^{-3}$, что указывает на неизменность локальной структуры данного ряда стекол. Важность значения *R_{min}* для анализа тушения активатора вытекает из той же формулы (8), согласно которой вероятность тушения сильно зависит от R_{min} (для ионов Sm³⁺ $W_l \sim R_{min}^{-5}$), и одним из основных требований к материалам с аномально слабым тушением является формирование в них структур с максимально возможным значением R_{min} .

Полученное R_{min} значение значительно превышает минимальное расстояние в хантитоподобных кристаллах. Подобный результат доказывает, что в хантитоподобных стеклах почти полностью отсутствуют связи Sm-O-Sm, т.е. полиэдры [SmO_n] изолированы друг от друга (не имеют общих вершин или Этот факт позволяет предположить, ЧТО ребер). при переходе ОТ хантитоподобного кристалла к стеклу того же состава структура распределения катионов в существенной степени сохраняется.

Для получения оптически однородных стекол в качестве оптимального нами выбран состав стекла 0,3Sm₂O₃-9,7Y₂O₃-30Al₂O₃-60B₂O₃ с температурой варки 1480°C. Для минимизации содержания OH⁻-групп проводился барботаж

расплава данного стекла «сухим» кислородом. Максимум полосы поглощения OH^{-} групп расположен в районе ~3555 см⁻¹ (~2800 нм), что делает их эффективными тушителями люминесценции Sm^{3+} . Согласно оценочным данным, сделанным на основе анализа спектров поглощения стекол, сваренных без бурления и обезвоженных, концентрация OH^{-} групп снизилась на ~ 10% (рис. 7а). Приблизительно на такое же значение выросла и интенсивность люминесценции в обезвоженном стекле (рис. 7б).

Рис. 7. а) (на вставке) Спектры поглощения стекол, сваренных без бурления (1) и с бурлением (2); б) СВЛ (1, 2) и СЛ (3,4) стекол состава №5, сваренных с бурлением (2, 4) и без бурления (1, 3); $\lambda_{воз \delta} = 404$ нм, $\lambda_{pee} = 600$ нм.

Преимуществом данного стекла является низкий К-1) по сравнению с (60.10^{-7}) фосфатными лазерными стеклами (более 100·10⁻⁷ К⁻¹) ТКЛР, что обусловливает его более высокую термостойкость И лучевую прочность при использовании в активного качестве элемента лазера.

Изучение активированных Sm³⁺ кристаллических порошков состава хантитоподобного кристалла (Sm,Y)Al₃(BO₃)₄ показало, что наличие в образцах даже долей процента Eu₂O₃ приводит к практически полному исчезновению люминесценции

Sm³⁺. При этом наблюдается люминесценция ионов Eu³⁺ также в оранжевокрасной области. Отсутствие кросс-релаксационных эффектов у Eu³⁺ обусловливает интерес к хантитоподобным порошковым люминофорам, активированным данными ионами.

Исследование поликристаллов EuAl₃(BO₃)₄ показало, что при возбуждении ксеноновой лампой СЛ (рис. 8, кривая 1) представлен тремя парами узких и интенсивных штарковских компонент с $\Delta\lambda \sim 1$ нм, которые соответствуют полосам ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ ($\lambda_{max} = 591$ и 596 нм), ${}^{7}F_{2}$ ($\lambda_{max} = 613$ и 618 нм), ${}^{7}F_{4}$ ($\lambda_{max} = 699$ и 704 нм) ионов Eu³⁺. Возрастание относительных интенсивностей широких пьедесталов и полосы люминесценции ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ при увеличении мощности

возбуждения с одновременным появлением новой, слаборазрешенной компоненты в полосе ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ (указана стрелкой) (рис. 8, кривая 2) указывает на существенную реорганизацию оптических центров Eu³⁺. По-видимому, структура последних в EuAl₃(BO₃)₄ из-за относительно большого ионного радиуса Eu³⁺ (0,947 Å) является неустойчивой, и при мощном возбуждении происходит смещение редкоземельного иона из центрального положения в тригональной призме [EuO₆].

при возбуждении излучением ксеноновой лампы (1),моноимпульсного лазера (2), импульсным электронным пучком (3). $\lambda_{6036} = 396$ нм $(1, 2); \Delta \lambda_{возб}$, нм: 2 (1) и 1 (2); $\Delta \lambda_{pez}$, нм: 0,2 (1, 2, 3); P, BT/cm^2 : 2.10⁻⁴ (1), $1,5\cdot10^{8}$ (2).

Рис. 8. СЛ поликристаллов $EuAl_3(BO_3)_4$ Рис. 9. Кинетика затухания (*a*) и разгорания *(б)* люминесценции $EuAl_3(BO_3)_4$ поликристаллов при возбуждении излучением моноимпульсного лазера (1,2) И импульсным электронным пучком (3). $\lambda_{per} = 613$ HM, $\lambda_{6030} = 396$ HM (1, 2). P, Bт/см²: 5·10⁶ (1), 1,5·10⁸ (2); Δt , нс: 10 (1, 2) и 2 (3).

Исчезновение «пьедесталов» под штарковскими компонентами переходов ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$, ${}^{7}F_{2}$, ${}^{7}F_{4}$ регулярных центров Eu^{3+} (рис. 8, кривая 3), сопровождающееся значительным ускорением высвечивания на протяжении нескольких сотен мкс (рис. 9а, ср. кривые 3 и 1) при возбуждении электронным пучком, свидетельствует о появлении в этих переходах суперлюминесценции. Более того, увеличение доли квантов (с 29% до 57% при возбуждении излучением ксеноновой лампы), излучаемых в наиболее интенсивной штарковской компоненте перехода ${}^5D_0 \rightarrow {}^7F_2$, с одновременным появлением на

кинетике разгорания люминесценции достаточно интенсивного пичка (рис. 9б, кривая 3) с $\Delta t \approx 2,2$ мкс указывает на зарождение в этом переходе генерационного процесса. Однако дальнейшего развития последний не находит. Основной причиной срыва генерации, по нашему мнению, является наведенное поглощение излучения в «сверхчувствительном» переходе ${}^5D_0 \rightarrow {}^5F_4$ ионов Eu³⁺, который находится в хорошем резонансе с переходом ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$. С увеличением мощности возбуждения закон распада начинает отклоняться от экспоненциального (рис. 9a), и при возбуждении ионов Eu³⁺ в переходе ${}^{7}F_{0} \rightarrow {}^{5}L_{6}$ средняя длительность распада уменьшается с $\tau \approx 920$ мкс $(P \approx 5.10^{6} \text{ Bt/cm}^{2})$ до 530 мкс $(P \approx 1.5.10^{8} \text{ Bt/cm}^{2})$ (рис. 9а, кривая 2). Таким образом, полученные результаты свидетельствуют о невысокой устойчивости структуры оптических центров Eu³⁺ в поликристаллах хантита EuAl₃(BO₃)₄ и её реорганизации при мощном фотовозбуждении в переходе ${}^{7}F_{0} \rightarrow {}^{5}L_{6}$, обеспечивающем поглощение двух квантов и последующий локальный разогрев в результате безызлучательной релаксации. При накачке импульсным пучком в течение нескольких сотен мкс наблюдается электронным суперлюминесценция ионов Eu^{3+} в переходах ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$, ${}^{7}F_{2}$, ${}^{7}F_{4}$, а зарождающаяся на начальном участке кинетики разгорания люминесценции пичковая генерация в переходе ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ быстро срывается, очевидно, из-за наведенного поглощения и тепловой расстройки микрорезонаторов.

<u>выводы</u>

1. Получены люминесцирующие в оранжево-красной области стекла состава хантитоподобного кристалла (Sm,Y)Al₃(BO₃)₄ и проведено сравнение их спектрально-кинетических характеристик с поликристаллическими образцами того же состава. Показано, что синтез данных стекол сопровождается незначительной сегрегацией редкоземельного активатора, что обеспечивает низкий уровень кросс-релаксационного тушения его люминесценции.

2. Установлено, что предельный квантовый выход люминесценции хантитоподобных стекол составляет 76% при содержании ионов активатора $N_{Sm}=0,18\cdot10^{20}$ см⁻³. Квантовый выход в стеклах оказывается выше, чем в поликристаллах того же состава, при $N_{Sm}<1,0\cdot10^{20}$ см⁻³.

3. Обнаружено, что во всех исследованных стеклах и поликристаллических образцах коэффициенты ветвления люминесценции для наиболее интенсивных

переходов ${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$ ($\lambda \sim 600$ нм) и ${}^{4}G_{5/2} \rightarrow {}^{6}H_{9/2}$ ($\lambda \sim 650$ нм) Sm³⁺ составляют 37 и 27% соответственно.

4. Определены значения поперечного сечения индуцированного излучения и микропараметры донорно-акцепторного взаимодействия, которые для хантитоподобных стекол составляют $\sigma({}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}) = 4,4 \cdot 10^{-22} \text{ см}^{2}$, $\sigma({}^{4}G_{5/2} \rightarrow {}^{6}H_{9/2}) = 3,8 \cdot 10^{-22} \text{ см}^{2}$ и $C_{DA} \sim 4,3-4,6 \cdot 10^{-54} \text{ см}^{8}/\text{с}$.

5. Рассчитано значение расстояния минимального сближения ионов R_{min} , которое для хантитоподобных стекол находится в пределах 0,66-0,68 нм при изменении концентраций Sm³⁺ от 1,0 до 6,8·10²⁰ см⁻³, что значительно превышает минимальное расстояние активатор-активатор в хантитоподобных кристаллах ($\approx 0,6$ нм). Показано, что для всех исследованных стекол характерна низкоэффективная миграция энергии по метастабильному уровню ${}^4G_{5/2}$ ионов Sm³⁺, а кросс-релаксационные взаимодействия последних осуществляются преимущественно по диполь-квадрупольному механизму.

6. Разработана методика варки и выработки стекол состава $0,3Sm_2O_3$ -9,7Y₂O₃-30,0Al₂O₃-60,0B₂O₃ (мол. %) при температурах ниже 1500°C с использованием механического перемешивания и бурления кислородом расплава в платиновых тиглях малого объема 0,3 л в целях получения образцов оптического качества.

7. Впервые получено вынужденное излучение основного типа центров Eu³⁺ в переходах ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$, ${}^{7}F_{2}$, ${}^{7}F_{4}$ при возбуждении хантитоподобных поликристаллов EuAl₃(BO₃)₄ импульсным электронным пучком с энергией 200 кэВ и длительностью 2 нс. Показано, что при лазерном возбуждении EuAl₃(BO₃)₄ с плотностью мощности более 5.10⁷ Bt/cm² в переходе ${}^{7}F_{0} \rightarrow {}^{5}L_{6}$ ионов Eu³⁺ происходит перестройка структуры оптических центров, сопровождающаяся увеличением вероятности радиационных переходов активатора.

Основные результаты диссертационной работы изложены в публикациях:

1. Малашкевич Г.Е., Сигаев В.Н., Голубев Н.В., Мамаджанова Е.Х., Данильчик А.В., Зубелевич В.З., Луценко Е.В. Перестройка оптических центров и стимулированное излучение Eu³⁺ в поликристаллах хантита при оптическом и электронном возбуждении // Письма в ЖЭТФ. 2010. Т. 92. вып. 8. С. 547-552.

2. Malashkevich G.E., Sukhadola A.A., Sergeev I.I., Prusova I.V., Goshko D.A., Golubev N.V., Mamadzhanova E.Kh., Savinkov V.I., Sarkisov P.D., Sigaev V.N., Luminescence of huntite polycrystalls and huntite-like glasses activated with Sm³⁺ ions // Proceeding of the 1st International Meeting «Trends in oxide materials-functions and structure between glasses and crystals». РХТУ им. Д.И. Менделеева, Москва, 29-31 марта 2011. С. 42-52.

3. Малашкевич Г.Е., Сигаев В.Н., Голубев Н.В., Мамаджанова Е.Х., Саркисов П.Д. Люминесцирующее стекло. Патент РФ № 2415089 , приоритет изобретения от 04.12.2009, зарегистрирован 27.03.2011. Патент РБ № 14839.

4. Malashkevich G., Sukhadola A., Sergeev I., Golubev N., Mamadzhanova E., Sigaev V., Spectral-luminescent properties of huntite polycrystalls and huntite-like glasses activated with Sm³⁺ ions // First International Conference on Luminescence of Lanthanides ICLL-1. Ukraine, Odessa, 5-9 September 2010. Program and abstracts book. P. 67.

5. Malashkevich G.E., Sigaev V.N., Golubev N.V., Mamadzhanova E.Z., Danilchyk A.V., Lutsenko E.V., Sukhadola A.A. Spontaneous and induced radiation of huntite $Sm_xEu_yY_{1-x-y}$ Al₃(BO₃)₄ powders // 4th International conference on physics of laser crystals-International workshop 11.5-Crystallography and spectral properties of nano and bulk materials- ICPLC-CSPNBM 10, Ukraine, Sudak, 12-16 September 2010. IL5

6. Мамаджанова Е.Х., Голубев Н.В., Малашкевич Г.Е., Сигаев В.Н., Люминесцирующие стекла в системах RE₂O₃-Al₂O₃-B₂O₃ (RE=Er, Sm, La) // Успехи в химии и химической технологии: сб. науч. тр. М.: РХТУ им. Д.И. Менделеева. 2010. Т. ХХІV. №6. С. 71-73.

Н.В., Мамаджанова Е.Х., Саркисов П.Л., Сигаев B.H.. 7. Голубев Малашкевич Г.Е. Люминесцентные свойства хантитоподобных стекол // XIX Международная научно-техническая конференция "Конструкции и технологии ИЗ неметаллических материалов". ΦΓΥΠ "ОНПП получения изделий "Технология", Обнинск, 5-7 октября 2010. C. 154-155.

8. Малашкевич Г.Е., Суходола А.А., Сигаев В.Н., Саркисов П.Д., Голубев Н.В., Мамаджанова Е.Х. Спектрально-люминесцентные свойства и процессы взаимодействия ионов Sm³⁺ в кварцевом и хантитоподобном стеклах // ІІІ конгресс физиков Беларуси, Симпозиум, посвященный 100-летию со дня рождения академика Ф.И. Федорова. Минск, 25-27 сентября 2011: Сборник тезисов и программа. С. 34.

9. Мамаджанова Е.Х., Голубев Н.В., Малашкевич Г.Е., Сигаев В.Н. Люминесцирующие хантитоподобные стекла, активированные ионами самария // Успехи в химии и химической технологии: сб. науч. тр. М.: РХТУ им. Д.И. Менделеева. 2011. Т. ХХV. №5. С. 97-101.

10. Малашкевич Г.Е., Сигаев В.Н., Голубев Н.В., Мамаджанова Е.Х., Петряков Е.В., Суходола А.А., Сергеев И.И. Спектрально-люминесцентные свойства хантитоподобных и кварцевых стекол, активированных ионами самария // 10-я Всероссийская конференция с элементами молодежной научной школы «Материалы нано-, микро-, оптоэлектроники и волоконной оптики: физические свойства и применение». Саранск, 4-7 октября 2011. тезисы докладов. С. 68.

11. Мамаджанова Е.Х., Голубев Н.В., Сигаев В.Н. Фазовое разделение стекол в системе Sm₂O₃-Y₂O₃-Al₂O₃-B₂O₃ // IV Всероссийская конференция по химической технологии с международным участием (XT'12). ИОНХ им. Н.С. Курнакова и ИХФ им. Н.Н. Семенова РАН. Москва, 18-23 марта 2012. Сборник тезисов докладов. С. 132-135.