Сведения об оппонентах:

ФИО	Дементьева Ольга Вадимовна
Ученая степень	
Ученое звание	доктор химических наук
	доцент ведущий научный сотрудник лаборатории
Должность	
Маста побети	поверхностных явлений в полимерных системах
Место работы	Институт физической химии и электрохимии им. А.Н.
A	Фрумкина (ИФХЭ)
Адрес	119071, Москва, Ленинский проспект, д.31, корп.4
Контакты	+7 (495) 955-46-60, dema_ol@mail.ru
Основные	1. О. В. Дементьева , И. Н. Сенчихин, М. Е. Карцева,
•	В. А. Огарев, А. В. Зайцева, Н. Н. Матушкина, В. М.
	Рудой. Новый способ загрузки лекарственных препаратов
диссертации	в мезопористые наночастицы кремнезема: золь-гель
	синтез с использованием их мицелл в качестве темплата.
	// Коллоидный журнал. 2016.T.78.№5.C.539–549.
	2. О. В. Дементьева , М. Е. Карцева, В. М. Сухов, В.
	М. Рудой. Температурно-временная эволюция
	ультрамалых затравочных наночастиц золота и синтез
	плазмонных нанооболочек // Коллоидный журнал.2017.
	T.79. №5.C.562–568.
	3. О. В. Дементьева , К. А. Наумова, И. Н. Сенчихин,
	Г. Б. Румянцева, В. М. Рудой. Золь-гель синтез
	мезоструктурированных SiO ₂ -контейнеров на темплате из
	везикул гидролизующегося биологически активного
	гемини-ПАВ // Коллоидный журнал.2017. Т.79. С.402-
	409.
	4. О. В. Дементьева, А. М. Семилетов, А. А.
	Чиркунов, В. М. Рудой, Ю. И. Кузнецов. Золь-гель синтез
	SiO ₂ -контейнеров на темплате из мицелл анионного
	ингибитора коррозии и перспективы создания защитных
	покрытий на их основе // Коллоидный журнал.2018. Т. 80.
	№5. C.498–508.
	5. В. В. Высоцкий, О. В. Дементьева , Н. А.
	Салаватов, А. В. Зайцева, М. Е. Карцева, И. В. Сапков, В.
	М. Рудой. Структура и электропроводность кольцевых
	осадков, формирующихся при испарении капель
	дисперсий, содержащих наночастицы золота с разной
	степенью анизотропии // Коллоидный журнал. 2018. Т.80.
	№6. C.652–662.
	6. Ogarev V. A., Rudoi V. M., Dement'eva O. V. Gold
	nanoparticles: Synthesis, optical properties, and application //
	Inorganic Materials: Applied Research. 2018. V. 9. P. 134–
	140.

- 7. М. Е. Карцева, **О. В. Дементьева**, А. В. Зайцева, В. М. Рудой. Бестемплатный синтез органокремнеземных нанотороидов и создание плазмонных структур ядро/оболочка на их основе // Коллоидный журнал. Т. 80.№3.С. 357–359.
- 8. Н. А. Салаватов, **О. В. Дементьева**, А. И. Михайличенко, В. М. Рудой. Некоторые аспекты беззатравочного синтеза золотых наностержней // Коллоидный журнал.2018. Т. 80. №5. С.571–580.

ФИО	Шешко Татьяна Федоровна
Ученая степень	кандидат химических наук
Ученое звание	доцент
Должность	доцент кафедры физической и коллоидной химии
Место работы	Российский университет дружбы народов (РУДН)
Адрес	117198, Москва, ул. Миклухо-Маклая, д.6
Контакты	+7 (495) 434-53-00, sheshko@bk.ru
Основные	1. Серов Ю.М., Шешко Т.Ф. Биметаллические
	системы, содержащие наночастицы Fe, Co, Ni и Mn,
теме диссертации	как катализаторы гидрогенизации оксидов углерода //
1	Журнал физической химии. 2012. Т.86.С. 344-349.
	2. Серов Ю.М. Дементьева М.В., Шешко Т.Ф.
	Синтез олефинов из СО и Н2 при атмосферном
	давлении на наносистемах, содержащих частицы Fe – и
	MnO ₂ // Теоретическая и экспериментальная химия.
	2013. T.49.C. 43-48.
	3. Шешко Т.Ф ., Серов Ю. М., Горяинова А. Н.,
	Крючкова Т.А.,Гаврилова Н.Н. Особенности
	углекислотной конверсии метана на MoO ₃ , MoO _{x-} C и β-
	Мо ₂ С // Бутлеровские сообщения. 2014.Т. 39.№ 9.С. 93-
	97.
	4. T.A. Kryuchkova, I.A. Khairullina, T.F. Sheshko ,
	Y.M. Serov. Catalytic properties features of perovskite-
	type ferrites in dry (carbon dioxide) methane reforming //
	Sviridov Readings. 2015. C.50.
	5. Шешко Т.Ф., Серов Ю.М., Дементьева М.В.,
	Шульга А., Числова И.В., Зверева И.А. Активность
	наноструктурированных перовскитоподобных
	ферритов гадолиния и стронция в каталитическом
	гидрировании СО // Журнал физической химии. 2016.
	T. 90. № 5. C. 686-692.
	б. Шешко Т.Ф ., Крючкова Т.А., Серов Ю.М.,
	Числова И.В., Зверева И.А. Новые смешанные
	перовскитоподобные катализаторы Gd ^{2-x} Sr ^{1+x} Fe ₂ O ₇ в
	углекислотной конверсии метана и производстве легких олефинов // Катализ в промышленности. 2017.
	петких олефинов // катализ в промышленности. 2017. Т.17. №1.С.51-59.
	7. Sheshko T.F. , Serov Y.M., Kryuchkova T.A.,
	Khayrullina I.A., Chislova I.V., Yafarova L.V., Zvereva
	I.A. Study of effect of preparation method and composition
	on the catalytic properties of complex oxides
	(Gd,Sr) _n ⁺¹ FenO _{3n} ⁺¹ for dry reforming of methane
	Nanotechnologies in Russia. 2017. T. 12. № 3-4. P. 174-
	184.
<u> </u>	1

8. Shulga A., Butusov L.A., Boruleva E.A., Chudinova G.K., **Sheshko T.F.,** Kurilkin V.V., Kochneva M.V. Fluorescent properties of Gd-doped ZnO nanonporous networks & its application in optical biosensing. V.1092. 2018.

Сведения о ведущей организации

Полное и	Казанский национальный исследовательский
сокращенное	технологический университет (КНИТУ)
наименование	
Место нахождения	Россия, Казань
Почтовый адрес,	Россия, 420015, Казань, ул. Карла Маркса, 68
телефон, адрес	Тел: +7(843)231-43-89
электронной почты	Эл. почта: office@kstu.ru
Адрес официального	http://www.kstu.ru/
сайта	
Список основных	1. Шамилов Р.Р., Нугаева А.А., Чаусов Д.Н.,
публикаций	Беляев В.В., Галяметдинов Ю.Г. Нанокомпозиты на
работников ведущей	основе гибридных квантовых точек и PFO // Вестник
организации по теме	технологического университета. 2014. Т.17. №.23.
диссертации в	C.42-44.
рецензируемых	2. Гатауллин А.Р., Богданова С.А., Кузнецов
научных изданиях за	К.В., Галяметдинов Ю.Г. Совместное
последние 5 лет	диспергирование фуллеренов С60 и углеродных
	нанотрубок в водных растворах ПАВ для введения в
	полимерные материалы // Вестник технологического
	университета. 2015. Т.18. В.8. С.55-57.
	3. Проскурина В.Е., Шаброва Е.С., Дубровская
	Н.Л. Флокуляция концентрированной суспензии
	TiO ₂ полимер-неорганическими гибридами //
	Вестник технологического университета. 2015. Т.18.
	№.10. C.21-26.
	4. С.А. Богданова, А. Р. Гатауллин, А. П.
	Рахматуллина, Ю. Г. Галяметдинов Свойства
	эластомерных композиций, полученных на основе
	бутадиен-стирольного латекса с добавками
	дисперсий углеродных нанотрубок // Промышленное
	производство и использование эластомеров. 2016.
	№.2. C.19-25.
	5. А.Т. Губайдуллин, И.А. Литвинов, А.И.
	Самигуллина, О.С. Зуева, В.С. Рухлов, Б.З.
	Идиятуллин, Ю.Ф. Зуев. Структура и динамика
	концентрированных мицеллярных растворов
	додецилсульфата натрия // Известия Академии наук:
	серия химическая. 2016. № 1. С.158-166.
	б. Потапова М.В., Юсупова Р.И., Кулагина Е.М.
	Реологическое поведение составляющих
	полимерной косметической композиции // Вестник
	технологического университета. 2017. Т.20. №.10.
	C.14-17.

- 7. Selivanova N.M., Gubaidullin A.T., Romanova K.A., Galyametdinov Yu.G. Modification of nonionic vesicles by adding decanol and functional lanthanide ions // Journal of surfactants and detergents. 2017. T.20. P.309-319.
- 8. N. V. Sautina, A. O. Zakharova, Yu. G. Galyametdinov. Influence of Lecithin Propylene Glycol Intermolecular Interactions at the Water / Vaseline Oil Interphase on the Formation of Self-Organizing Structures // Liquid Crystals and their Application. 2017. V.17. №2. P.35-41.
- 9. Gataullin A. R., Bogdanova S. A., Rakhmatullina A. P., Galyametdinov Yu. G. Dispersion of carbon nanotubes in solutions of oxyethylated isononylphenols // Russian journal of applied chemistry. 2017. V. 90. №.11. P.1795-1803.